
High Dimensional Inference Course Project

Debepsita Mukherjee
Rohan Shinde

Sampurna Mondal
Yash Gupta

Indian Statistical Institute

20th April, 2024

Yale Face Expression Data

2414 frontal-face images of over 38 subjects

64 images per subject under different lighting conditions and various
facial expressions

of Features/pixels = 192× 168 ≈ 32200

1 / 24

Yale Face Expression Data

2414 frontal-face images of over 38 subjects

64 images per subject under different lighting conditions and various
facial expressions

of Features/pixels = 192× 168 ≈ 32200

1 / 24

Yale Face Expression Data

2414 frontal-face images of over 38 subjects

64 images per subject under different lighting conditions and various
facial expressions

of Features/pixels = 192× 168 ≈ 32200

1 / 24

Yale Face Expression Data

2414 frontal-face images of over 38 subjects

64 images per subject under different lighting conditions and various
facial expressions

of Features/pixels = 192× 168 ≈ 32200

1 / 24

How does PCA fare here?

PCA: Linear dimensionality reduction by projecting data onto
directions of maximum variance

Figure 1: Scree Plot for PCA
Figure 2: Accuracy of PCA for different
intrinsic dimensions using KNN classifier

Images will be locally similar in many regions and symmetric in few
dimensions

Raises concern over the linear projection of PCA

1 / 24

How does PCA fare here?

PCA: Linear dimensionality reduction by projecting data onto
directions of maximum variance

Figure 1: Scree Plot for PCA

Figure 2: Accuracy of PCA for different
intrinsic dimensions using KNN classifier

Images will be locally similar in many regions and symmetric in few
dimensions

Raises concern over the linear projection of PCA

1 / 24

How does PCA fare here?

PCA: Linear dimensionality reduction by projecting data onto
directions of maximum variance

Figure 1: Scree Plot for PCA
Figure 2: Accuracy of PCA for different
intrinsic dimensions using KNN classifier

Images will be locally similar in many regions and symmetric in few
dimensions

Raises concern over the linear projection of PCA

1 / 24

How does PCA fare here?

PCA: Linear dimensionality reduction by projecting data onto
directions of maximum variance

Figure 1: Scree Plot for PCA
Figure 2: Accuracy of PCA for different
intrinsic dimensions using KNN classifier

Images will be locally similar in many regions and symmetric in few
dimensions

Raises concern over the linear projection of PCA

1 / 24

How does PCA fare here?

PCA: Linear dimensionality reduction by projecting data onto
directions of maximum variance

Figure 1: Scree Plot for PCA
Figure 2: Accuracy of PCA for different
intrinsic dimensions using KNN classifier

Images will be locally similar in many regions and symmetric in few
dimensions

Raises concern over the linear projection of PCA

1 / 24

Non-Linear Dimension Reduction

Why Non-Linear Dimension Reduction

Direction of maximum variation may not be
linear especially in high-dimensional data

Preserving global/local topology may be
of importance

Captures
complex non-linear relationships among
the variables

2 / 24

Why Non-Linear Dimension Reduction

Direction of maximum variation may not be
linear especially in high-dimensional data

Preserving global/local topology may be
of importance

Captures
complex non-linear relationships among
the variables

2 / 24

Why Non-Linear Dimension Reduction

Direction of maximum variation may not be
linear especially in high-dimensional data

Preserving global/local topology may be
of importance

Captures
complex non-linear relationships among
the variables

2 / 24

Extending Concept of PCA

Kernel PCA

Apply high dimensional transformation
to capture non-linearity

Use Kernel trick to compute covariance
matrix in transformed space (Gram
matrix)

Apply PCA on the covariance matrix of
the transformed data

3 / 24

Kernel PCA

Apply high dimensional transformation
to capture non-linearity

Use Kernel trick to compute covariance
matrix in transformed space (Gram
matrix)

Apply PCA on the covariance matrix of
the transformed data

3 / 24

Kernel PCA

Apply high dimensional transformation
to capture non-linearity

Use Kernel trick to compute covariance
matrix in transformed space (Gram
matrix)

Apply PCA on the covariance matrix of
the transformed data

3 / 24

Kernel PCA

Apply high dimensional transformation
to capture non-linearity

Use Kernel trick to compute covariance
matrix in transformed space (Gram
matrix)

Apply PCA on the covariance matrix of
the transformed data

3 / 24

Kernel PCA

Kernel PCA Algorithm (SchSlkopf et al., 1997)

1 Consider Φ : Rp → H (dim(H) > p), assume
∑N

i=1Φ(xi) = 0

2 For known kernel function K (x, y) = Φ(x)TΦ(y), define K = ((Kij)),
with Kij = Φ(Xi)

TΦ(Xj) (X1, · · · ,XN are the observations)

3 Directly compute the projections from a point in the feature space
Φ(x) onto the r -th principal component (V r) as:

(V r)TΦ(x) =
(∑N

i=1 a
r
iΦ(xi)

)T
Φ(x) where ari are obtained by

solving
1 Eigenvector equation: Nλa = Ka

2 Normalizing eigenvector equation: (V r)TV r = 1

3 / 24

Kernel PCA

Kernel PCA Algorithm (SchSlkopf et al., 1997)

1 Consider Φ : Rp → H (dim(H) > p), assume
∑N

i=1Φ(xi) = 0

2 For known kernel function K (x, y) = Φ(x)TΦ(y), define K = ((Kij)),
with Kij = Φ(Xi)

TΦ(Xj) (X1, · · · ,XN are the observations)

3 Directly compute the projections from a point in the feature space
Φ(x) onto the r -th principal component (V r) as:

(V r)TΦ(x) =
(∑N

i=1 a
r
iΦ(xi)

)T
Φ(x) where ari are obtained by

solving
1 Eigenvector equation: Nλa = Ka

2 Normalizing eigenvector equation: (V r)TV r = 1

3 / 24

Kernel PCA

Kernel PCA Algorithm (SchSlkopf et al., 1997)

1 Consider Φ : Rp → H (dim(H) > p), assume
∑N

i=1Φ(xi) = 0

2 For known kernel function K (x, y) = Φ(x)TΦ(y), define K = ((Kij)),
with Kij = Φ(Xi)

TΦ(Xj) (X1, · · · ,XN are the observations)

3 Directly compute the projections from a point in the feature space
Φ(x) onto the r -th principal component (V r) as:

(V r)TΦ(x) =
(∑N

i=1 a
r
iΦ(xi)

)T
Φ(x) where ari are obtained by

solving
1 Eigenvector equation: Nλa = Ka

2 Normalizing eigenvector equation: (V r)TV r = 1

3 / 24

PCA vs Kernel PCA

Figure 3: Dimension reduction via PCA Figure 4: Dimension reduction via PCA

For choice of kernel refer Bernhard et al. (1998)

4 / 24

Multidimensional Scaling (MDS)

Measure all pairwise Euclidean distances between samples

Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

1 Given a symmetric distance or affinity matrix D, set up the squared
proximity matrix D(2) = [d2

ij].

2 Define B = −1
2HD(2)H where H = I− 1

n1N1
T
N

3 Y = EmΛ
1/2
m where Λm is the diagonal matrix of m largest eigenvalues

of B and Em is the matrix of the respective m eigenvectors.

⇕

arg min
Y1,··· ,YN

N∑
i=1

N∑
j=1

(Dij − ||Yi − Yj ||)2

5 / 24

Multidimensional Scaling (MDS)

Measure all pairwise Euclidean distances between samples

Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

1 Given a symmetric distance or affinity matrix D, set up the squared
proximity matrix D(2) = [d2

ij].

2 Define B = −1
2HD(2)H where H = I− 1

n1N1
T
N

3 Y = EmΛ
1/2
m where Λm is the diagonal matrix of m largest eigenvalues

of B and Em is the matrix of the respective m eigenvectors.

⇕

arg min
Y1,··· ,YN

N∑
i=1

N∑
j=1

(Dij − ||Yi − Yj ||)2

5 / 24

Multidimensional Scaling (MDS)

Measure all pairwise Euclidean distances between samples

Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

1 Given a symmetric distance or affinity matrix D, set up the squared
proximity matrix D(2) = [d2

ij].

2 Define B = −1
2HD(2)H where H = I− 1

n1N1
T
N

3 Y = EmΛ
1/2
m where Λm is the diagonal matrix of m largest eigenvalues

of B and Em is the matrix of the respective m eigenvectors.

⇕

arg min
Y1,··· ,YN

N∑
i=1

N∑
j=1

(Dij − ||Yi − Yj ||)2

5 / 24

Multidimensional Scaling (MDS)

Measure all pairwise Euclidean distances between samples

Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

1 Given a symmetric distance or affinity matrix D, set up the squared
proximity matrix D(2) = [d2

ij].

2 Define B = −1
2HD(2)H where H = I− 1

n1N1
T
N

3 Y = EmΛ
1/2
m where Λm is the diagonal matrix of m largest eigenvalues

of B and Em is the matrix of the respective m eigenvectors.

⇕

arg min
Y1,··· ,YN

N∑
i=1

N∑
j=1

(Dij − ||Yi − Yj ||)2

5 / 24

Connection b/w Kernel PCA & MDS

Result (Williams, 2002)

Using an Isotropic Kernel function the Kernel PCA can be interpreted as
performing a kind of MDS.

Isotropic Kernel: Kernel depending only on the Euclidean distance

6 / 24

Other notions of Distances

Geodesic Distance

7 / 24

Geodesic Distance

Assumption:
Euclidean distance is “meaningful” for short distances

7 / 24

Geodesic Distance

Assumption:
Euclidean distance is “meaningful” for short distances

Figure 5: Geodesic Distance

7 / 24

Geodesic Distance

Assumption:
Euclidean distance is “meaningful” for short distances

Figure 5: Geodesic Distance

7 / 24

Geodesic Distance

Assumption:
Euclidean distance is “meaningful” for short distances

Figure 5: Geodesic Distance

Geodesic Distance: Shortest distance in this graph

7 / 24

Geodesic Distance

Assumption:
Euclidean distance is “meaningful” for short distances

Figure 5: Geodesic Distance

Geodesic Distance: Shortest distance in this graph

7 / 24

Isometric Feature Mapping (ISOMAP)

1 We have a training set

2 Calculate geodesic distance for each pair

3 Use MDS to embed corresponding points to a new space

Application on Swiss Roll

Figure 6: Applying ISOMAP to Swiss Roll data

8 / 24

Isometric Feature Mapping (ISOMAP)

1 We have a training set

2 Calculate geodesic distance for each pair

3 Use MDS to embed corresponding points to a new space

Application on Swiss Roll

Figure 6: Applying ISOMAP to Swiss Roll data

8 / 24

Isometric Feature Mapping (ISOMAP)

1 We have a training set

2 Calculate geodesic distance for each pair

3 Use MDS to embed corresponding points to a new space

Application on Swiss Roll

Figure 6: Applying ISOMAP to Swiss Roll data

8 / 24

Isometric Feature Mapping (ISOMAP)

1 We have a training set

2 Calculate geodesic distance for each pair

3 Use MDS to embed corresponding points to a new space

Application on Swiss Roll

Figure 6: Applying ISOMAP to Swiss Roll data

8 / 24

Isometric Feature Mapping (ISOMAP)

ISOMAP Algorithm

1 Determine k neighbourhood graph G of the observed data {xi}

2 Compute shortest paths in the graph for all pairs of data points to
form a distance matrix D. Each edge xi , xj is weighted by its
Euclidean length ||xi − xj || or by some other useful metric

3 Apply MDS to the resulting shortest-path distance matrix D

8 / 24

Compare PCA with ISOMAP

Figure 7: Swiss Roll Data with
N = 1000

Figure 8: PCA

Figure 9: ISOMAP

9 / 24

Compare PCA with ISOMAP

Figure 7: Swiss Roll Data with
N = 1000

Figure 8: PCA

Figure 9: ISOMAP

9 / 24

Compare PCA with ISOMAP

Figure 10: Swiss Roll Data with
N = 300

Figure 11: PCA

Figure 12: ISOMAP

9 / 24

Isometric Feature Mapping (ISOMAP)

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in Rp, with respect to a
density function α = α(y). Let f be a C 2-smooth isometric embedding of
that region in Rd . Given λ, µ > 0, for a suitable choice of neighborhood
size parameter k , we have

1− λ ≤ recovered distance

original distance
≤ 1 + λ

with probability at least 1− µ, provided that the simple size is sufficiently
large [The formula is taken to hold for all pairs of points simultaneously].

MDS is isometric C 2-smooth embedding

ISOMAP preserves distance (globally)

10 / 24

Isometric Feature Mapping (ISOMAP)

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in Rp, with respect to a
density function α = α(y). Let f be a C 2-smooth isometric embedding of
that region in Rd . Given λ, µ > 0, for a suitable choice of neighborhood
size parameter k , we have

1− λ ≤ recovered distance

original distance
≤ 1 + λ

with probability at least 1− µ, provided that the simple size is sufficiently
large [The formula is taken to hold for all pairs of points simultaneously].

MDS is isometric C 2-smooth embedding

ISOMAP preserves distance (globally)

10 / 24

Isometric Feature Mapping (ISOMAP)

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in Rp, with respect to a
density function α = α(y). Let f be a C 2-smooth isometric embedding of
that region in Rd . Given λ, µ > 0, for a suitable choice of neighborhood
size parameter k , we have

1− λ ≤ recovered distance

original distance
≤ 1 + λ

with probability at least 1− µ, provided that the simple size is sufficiently
large [The formula is taken to hold for all pairs of points simultaneously].

MDS is isometric C 2-smooth embedding

ISOMAP preserves distance (globally)

10 / 24

Nonlinear
Dimension
reduction

Preserving
Global

Properties

Kernel PCA

MDS

ISOMAP

Geodesic NLM

Many more

Nonlinear
Dimension
reduction

Preserving
Global

Properties

Kernel PCA

MDS

ISOMAP

Geodesic NLM

Many more

Nonlinear
Dimension
reduction

Preserving
Local Properties

LLE

Diffusion Map

t-SNE

Laplacian
eigenmaps

Many more

Some subregions must be locally stretched or shrunk in order to embed them in a
lower-dimensional space

Nonlinear
Dimension
reduction

Preserving
Global

Properties

Kernel PCA

MDS

ISOMAP

Geodesic NLM

Many more

Nonlinear
Dimension
reduction

Preserving
Local Properties

LLE

Diffusion Map

t-SNE

Laplacian
eigenmaps

Many more

Some subregions must be locally stretched or shrunk in order to embed them in a
lower-dimensional space

Preserving Local Properties

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 1
Build Local Models

1 Use any distance metric to get the k-nearest neighbors for each point

Ni : k- nearest neighbors of i th point

2 For each point, identify the weighted sum of the neighbors that
predicts the location of the point

X̂i =
∑
Xj∈Ni

wijXj s.t.
∑
Xj∈Ni

wij = 1

To calculate weights we minimise:
∑N

i=1 ||Xi − X̂i ||2
11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

1 The same weights that reconstruct the data points in p dimensions should
reconstruct it in the manifold in d dimensions

2 To minimise: ∣∣∣∣∣∣
∣∣∣∣∣∣Yi −

∑
Yj∈Ni

wijYj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Equivalent to minimise:

(YT (I −W)T (I −W)Y) subject to
1

N
YTY = I

3 Solving Lagrangian we can get,

Y is the eigenvectors of (I −W)T (I −W)

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

1 The same weights that reconstruct the data points in p dimensions should
reconstruct it in the manifold in d dimensions

2 To minimise: ∣∣∣∣∣∣
∣∣∣∣∣∣Yi −

∑
Yj∈Ni

wijYj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Equivalent to minimise:

(YT (I −W)T (I −W)Y) subject to
1

N
YTY = I

3 Solving Lagrangian we can get,

Y is the eigenvectors of (I −W)T (I −W)

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

1 The same weights that reconstruct the data points in p dimensions should
reconstruct it in the manifold in d dimensions

2 To minimise: ∣∣∣∣∣∣
∣∣∣∣∣∣Yi −

∑
Yj∈Ni

wijYj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Equivalent to minimise:

(YT (I −W)T (I −W)Y) subject to
1

N
YTY = I

3 Solving Lagrangian we can get,

Y is the eigenvectors of (I −W)T (I −W)

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

1 The same weights that reconstruct the data points in p dimensions should
reconstruct it in the manifold in d dimensions

2 To minimise: ∣∣∣∣∣∣
∣∣∣∣∣∣Yi −

∑
Yj∈Ni

wijYj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Equivalent to minimise:

(YT (I −W)T (I −W)Y) subject to
1

N
YTY = I

3 Solving Lagrangian we can get,

Y is the eigenvectors of (I −W)T (I −W)

11 / 24

Locally Linear Embedding (LLE)

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

1 The same weights that reconstruct the data points in p dimensions should
reconstruct it in the manifold in d dimensions

2 To minimise: ∣∣∣∣∣∣
∣∣∣∣∣∣Yi −

∑
Yj∈Ni

wijYj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Equivalent to minimise:

(YT (I −W)T (I −W)Y) subject to
1

N
YTY = I

3 Solving Lagrangian we can get,

Y is the eigenvectors of (I −W)T (I −W)
11 / 24

Locally Linear Embedding (LLE)

Figure 13: Applying LLE to a synthetic data

12 / 24

Locally Linear Embedding (LLE)

Figure 13: Applying LLE to a synthetic data

12 / 24

Diffusion Map

Idea: If we take random walk on the data then walking at nearby point is
more likely.

Diffusion Map Algorithm

1 Similarity Matrix L : Li ,j = k(xi , xj)

2 Normalize the matrix according to parameter α : L(α) = D−αLD−α

where Di ,i =
∑

j Li ,j

3 Form the normalized matrix M =
(
D(α)

)−1
L(α) where D(α) is a

diagonal matrix and D
(α)
i ,i =

∑
j L

(α)
i ,j .

13 / 24

Diffusion Map

Idea: If we take random walk on the data then walking at nearby point is
more likely.

Diffusion Map Algorithm

4 Compute the d largest eigenvalues of Mt and the corresponding
eigenvectors.

5 Use diffusion map to get the embedding Ψt where
Ψt(x) = (λt1ψ1(x), λ

t
2ψ2(x), . . . , λ

t
dψd(x))

6 Thus we get the diffusion map from the original data to a
d-dimensional space which is embedded in the original space.

13 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

Minimize the KL divergence between high and low dimensional affinities
pij & qij

L =
∑

i ,j pij log
pij
qij

High penalty for putting close
neighbour far away

14 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

Minimize the KL divergence between high and low dimensional affinities
pij & qij

L =
∑

i ,j pij log
pij
qij

High penalty for putting close
neighbour far away

14 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

t-SNE Algorithm
1 High-dimensional similarities:

pj|i =
exp

(
−∥xi − xj∥2 /2σ2

i

)
∑

k ̸=i exp
(
−∥xi − xk∥2 /2σ2

i

)
2 Then symmetrize and normalize to sum to one: pij =

pi|j+pj|i
2n

3 Low-dimensional similarities:

qij =
wij

Z
, wij = k (∥yi − yj∥) , Z =

∑
k ̸=l

wkl

4 SNE: k(d) = exp
(
−d2

)
and t-SNE: k(d) = 1/

(
1 + d2

)
5 L = −

∑
i,j pij log qij = −

∑
i,j pij logwij + log

∑
i,j wij

6 Apply gradient descent

14 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

t-SNE Algorithm
1 High-dimensional similarities:

pj|i =
exp

(
−∥xi − xj∥2 /2σ2

i

)
∑

k ̸=i exp
(
−∥xi − xk∥2 /2σ2

i

)
2 Then symmetrize and normalize to sum to one: pij =

pi|j+pj|i
2n

3 Low-dimensional similarities:

qij =
wij

Z
, wij = k (∥yi − yj∥) , Z =

∑
k ̸=l

wkl

4 SNE: k(d) = exp
(
−d2

)
and t-SNE: k(d) = 1/

(
1 + d2

)

5 L = −
∑

i,j pij log qij = −
∑

i,j pij logwij + log
∑

i,j wij

6 Apply gradient descent

14 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

t-SNE Algorithm
1 High-dimensional similarities:

pj|i =
exp

(
−∥xi − xj∥2 /2σ2

i

)
∑

k ̸=i exp
(
−∥xi − xk∥2 /2σ2

i

)
2 Then symmetrize and normalize to sum to one: pij =

pi|j+pj|i
2n

3 Low-dimensional similarities:

qij =
wij

Z
, wij = k (∥yi − yj∥) , Z =

∑
k ̸=l

wkl

4 SNE: k(d) = exp
(
−d2

)
and t-SNE: k(d) = 1/

(
1 + d2

)
5 L = −

∑
i,j pij log qij = −

∑
i,j pij logwij + log

∑
i,j wij

6 Apply gradient descent

14 / 24

t-Stochastic Neighbourhood Embedding (t-SNE)

15 / 24

Comparison among all methods (discussed here)

2-d Data (Half Moons Data)

(a) Actual data

(b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 14: Comparison among six methods for half moon data (N = 100)

16 / 24

2-d Data (Half Moons Data)

(a) Actual data (b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 14: Comparison among six methods for half moon data (N = 100)

16 / 24

3-d Data (Swiss Roll)

(a) Actual data

(b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 15: Comparison among six methods for swiss roll data (N = 500)

17 / 24

3-d Data (Swiss Roll)

(a) Actual data (b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 15: Comparison among six methods for swiss roll data (N = 500)

17 / 24

3-d Data (S-Curve Data)

(a) Actual data

(b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 16: Comparison among six methods for S-curve data (N = 200)

18 / 24

3-d Data (S-Curve Data)

(a) Actual data (b) PCA (c) KPCA (d) MDS

(e) ISOMAP (f) LLE (g) Diffusion Map (h) t-SNE

Figure 16: Comparison among six methods for S-curve data (N = 200)

18 / 24

Challenges on applying on Real-life Data

Where is the problem?

Imagine a library with bookshelves (features) with two scenarios:

Many shelves with few books (low spread-outness).

Few shelves with books scattered across (high spread-outness).

Traditional methods (e.g., number of features) can’t capture this
”spread-outness.” Here’s where fractal dimension comes in.

19 / 24

Definition: q-Dimension

Fractal dimension (DF) refers to dimensions of fractals (capacity,
correlation, information). q-dimension unifies these.

Suppose y is a random variable with DF F (.) and pdf f (.)

For ϵ > 0, support of F is covered with a grid of cubes with edge
length ϵ

N(ϵ) be the number of cubes intersecting the support and pi the
probability of populated cubes:

Dq = lim
ϵ→0

log

N(ϵ)∑
i=1

pqi


(q − 1) log(ϵ)

If the limit exists, Dq is the q-dimension of F .

20 / 24

Capacity Dimension

Setting q = 0 in the q-dimension formula yields the capacity
dimension (dcap).

Focuses on the number of covering boxes (N(ϵ)) as cube size (ϵ)
shrinks.

dcap = lim
ϵ→0

log(N(ϵ))

log(ϵ)

Unlike other dimensions, it ignores individual point probabilities.

21 / 24

Application on a Synthetic Dataset

1 Generation n=500 observation from N(0, Ip) where Ip is a Identity
matrix of order p=1000 and it is normalised.

2 Box Counting dimension is calculated by the above algorithm

Figure 17: Log-Log Plot

3 Box Counting Dimension Estimated: 16.77263

22 / 24

Application on Yale Dataset

Application on Yale Dataset

Intrinsic dimension was found out to be 12

Methods Accuracy(%)

PCA 24.637
Kernel PCA 24.637
MDS 14.285
Isomap 46.376
LLE 42.443
Diffusion maps 27.950
t-SNE 57.142

Table 1: Accuracy of 5-NN classifier for the dimension reduced data

23 / 24

Application on Yale Dataset

Intrinsic dimension was found out to be 12

Methods Accuracy(%)

PCA 24.637
Kernel PCA 24.637
MDS 14.285
Isomap 46.376
LLE 42.443
Diffusion maps 27.950
t-SNE 57.142

Table 1: Accuracy of 5-NN classifier for the dimension reduced data

23 / 24

Further Exploration

Further Exploration

Computational Complexity

Estimation of Intrinsic Dimension

Use of non-linear modelling architecture after linear dimension
reduction over Nonlinear dimension reduction?

Extensions of the NLDR methods to incorporate handling
out-of-sample data

24 / 24

Further Exploration

Computational Complexity

Estimation of Intrinsic Dimension

Use of non-linear modelling architecture after linear dimension
reduction over Nonlinear dimension reduction?

Extensions of the NLDR methods to incorporate handling
out-of-sample data

24 / 24

Further Exploration

Computational Complexity

Estimation of Intrinsic Dimension

Use of non-linear modelling architecture after linear dimension
reduction over Nonlinear dimension reduction?

Extensions of the NLDR methods to incorporate handling
out-of-sample data

24 / 24

References

S. Bernhard, S. Alexander, and M. Klaus-Robert. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10, 1998.

V. de Silva and J. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. 2002.

B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley. Locally linear
embedding and its variants: Tutorial and survey. 2020.

B. SchSlkopf, A. Smola, and K.-R. Mfiller. Kernel principal component
analysis. 1997.

C. Williams. On a connection between kernel pca and metric
multidimensional scaling. 2002.

	Non-Linear Dimension Reduction
	Extending Concept of PCA
	Other notions of Distances
	Preserving Local Properties
	Comparison among all methods (discussed here)
	Challenges on applying on Real-life Data
	Application on Yale Dataset
	Further Exploration
	References

