High Dimensional Inference Course Project

Debepsita Mukherjee Rohan Shinde Sampurna Mondal Yash Gupta

Indian Statistical Institute

20th April, 2024

• 2414 frontal-face images of over 38 subjects

- 2414 frontal-face images of over 38 subjects
- 64 images per subject under different lighting conditions and various facial expressions

- 2414 frontal-face images of over 38 subjects
- 64 images per subject under different lighting conditions and various facial expressions
- # of Features/pixels = $192 \times 168 \approx 32200$

- 2414 frontal-face images of over 38 subjects
- 64 images per subject under different lighting conditions and various facial expressions
- # of Features/pixels = $192 \times 168 \approx 32200$

Figure 1: Scree Plot for PCA

Figure 1: Scree Plot for PCA

Figure 2: Accuracy of PCA for different intrinsic dimensions using KNN classifier

 PCA: Linear dimensionality reduction by projecting data onto directions of maximum variance

Figure 1: Scree Plot for PCA

Figure 2: Accuracy of PCA for different intrinsic dimensions using KNN classifier

 Images will be locally similar in many regions and symmetric in few dimensions

Figure 1: Scree Plot for PCA

Figure 2: Accuracy of PCA for different intrinsic dimensions using KNN classifier

- Images will be locally similar in many regions and symmetric in few dimensions
- Raises concern over the linear projection of PCA

Why Non-Linear Dimension Reduction

• Direction of maximum variation may not be linear especially in high-dimensional data

Why Non-Linear Dimension Reduction

- Direction of maximum variation may not be linear especially in high-dimensional data
- Preserving global/local topology may be of importance

Why Non-Linear Dimension Reduction

- Direction of maximum variation may not be linear especially in high-dimensional data
- Preserving global/local topology may be of importance
- Captures
 complex non-linear relationships among the variables

 Apply high dimensional transformation to capture non-linearity

- Apply high dimensional transformation to capture non-linearity
- Use Kernel trick to compute covariance matrix in transformed space (Gram matrix)

- Apply high dimensional transformation to capture non-linearity
- Use Kernel trick to compute covariance matrix in transformed space (Gram matrix)
- Apply PCA on the covariance matrix of the transformed data

Kernel PCA Algorithm (SchSlkopf et al., 1997)

• Consider $\Phi: \mathbb{R}^p \to \mathcal{H} \; (\dim(\mathcal{H}) > p)$, assume $\sum_{i=1}^N \Phi(\mathbf{x}_i) = 0$

Kernel PCA Algorithm (SchSlkopf et al., 1997)

- Consider $\Phi : \mathbb{R}^p \to \mathcal{H} \; (\dim(\mathcal{H}) > p)$, assume $\sum_{i=1}^N \Phi(\mathbf{x}_i) = 0$
- ② For known kernel function $K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x})^T \Phi(\mathbf{y})$, define $K = ((K_{ij}))$, with $K_{ij} = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_j)$ ($\mathbf{X}_1, \dots, \mathbf{X}_N$ are the observations)

Kernel PCA Algorithm (SchSlkopf et al., 1997)

- Consider $\Phi : \mathbb{R}^p \to \mathcal{H} \; (\dim(\mathcal{H}) > p)$, assume $\sum_{i=1}^N \Phi(\mathbf{x}_i) = 0$
- ② For known kernel function $K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x})^T \Phi(\mathbf{y})$, define $K = ((K_{ij}))$, with $K_{ij} = \Phi(\mathbf{X}_i)^T \Phi(\mathbf{X}_j)$ ($\mathbf{X}_1, \dots, \mathbf{X}_N$ are the observations)
- 3 Directly compute the projections from a point in the feature space $\Phi(\mathbf{x})$ onto the *r*-th principal component (V^r) as:

$$(V^r)^T \Phi(\mathbf{x}) = \left(\sum_{i=1}^N a_i^r \Phi(\mathbf{x_i})\right)^T \Phi(\mathbf{x})$$
 where a_i^r are obtained by solving

- Eigenvector equation: $N\lambda a = Ka$
- **2** Normalizing eigenvector equation: $(V^r)^T V^r = 1$

PCA vs Kernel PCA

Figure 3: Dimension reduction via PCA Figure 4: Dimension reduction via PCA

• For choice of kernel refer Bernhard et al. (1998)

• Measure all pairwise Euclidean distances between samples

- Measure all pairwise Euclidean distances between samples
- Embed in lower dimensional space preserving pairwise distances

- Measure all pairwise Euclidean distances between samples
- Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

- Given a symmetric distance or affinity matrix D, set up the squared proximity matrix $\mathbf{D}^{(2)} = [d_{ij}^2]$.
- ② Define $\mathbf{B} = -\frac{1}{2}\mathbf{H}\mathbf{D}^{(2)}\mathbf{H}$ where $\mathbf{H} = \mathbf{I} \frac{1}{n}\mathbf{1}_N\mathbf{1}_N^T$
- **3** $\mathbf{Y} = \mathbf{E}_m \mathbf{\Lambda}_m^{1/2}$ where $\mathbf{\Lambda}_m$ is the diagonal matrix of m largest eigenvalues of \mathbf{B} and \mathbf{E}_m is the matrix of the respective m eigenvectors.

- Measure all pairwise Euclidean distances between samples
- Embed in lower dimensional space preserving pairwise distances

MDS Algorithm

- Given a symmetric distance or affinity matrix D, set up the squared proximity matrix $\mathbf{D}^{(2)} = [d_{ij}^2]$.
- ② Define $\mathbf{B} = -\frac{1}{2}\mathbf{H}\mathbf{D}^{(2)}\mathbf{H}$ where $\mathbf{H} = \mathbf{I} \frac{1}{n}\mathbf{1}_N\mathbf{1}_N^T$
- **3** $\mathbf{Y} = \mathbf{E}_m \mathbf{\Lambda}_m^{1/2}$ where $\mathbf{\Lambda}_m$ is the diagonal matrix of m largest eigenvalues of \mathbf{B} and \mathbf{E}_m is the matrix of the respective m eigenvectors.

$$\underset{\mathbf{Y}_{1},\cdots,\mathbf{Y}_{N}}{\arg\min} \sum_{i=1}^{N} \sum_{j=1}^{N} (D_{ij} - ||\mathbf{Y}_{i} - \mathbf{Y}_{j}||)^{2}$$

Connection b/w Kernel PCA & MDS

Result (Williams, 2002)

Using an Isotropic Kernel function the Kernel PCA can be interpreted as performing a kind of MDS.

Isotropic Kernel: Kernel depending only on the Euclidean distance

Assumption:

Euclidean distance is "meaningful" for short distances

Assumption:

Euclidean distance is "meaningful" for short distances

Figure 5: Geodesic Distance

Assumption:

Euclidean distance is "meaningful" for short distances

Figure 5: Geodesic Distance

Assumption:

Euclidean distance is "meaningful" for short distances

Figure 5: Geodesic Distance

Geodesic Distance: Shortest distance in this graph

Assumption:

Euclidean distance is "meaningful" for short distances

Figure 5: Geodesic Distance

Geodesic Distance: Shortest distance in this graph

Isometric Feature Mapping (ISOMAP)

We have a training set

- We have a training set
- Calculate geodesic distance for each pair

- We have a training set
- 2 Calculate geodesic distance for each pair
- Use MDS to embed corresponding points to a new space

- We have a training set
- 2 Calculate geodesic distance for each pair
- Use MDS to embed corresponding points to a new space

Application on Swiss Roll

Figure 6: Applying ISOMAP to Swiss Roll data

ISOMAP Algorithm

- **①** Determine k neighbourhood graph G of the observed data $\{x_i\}$
- ② Compute shortest paths in the graph for all pairs of data points to form a distance matrix D. Each edge x_i , x_j is weighted by its Euclidean length $||x_i x_j||$ or by some other useful metric
- \odot Apply MDS to the resulting shortest-path distance matrix D

Compare PCA with ISOMAP

Figure 7: Swiss Roll Data with N = 1000

Compare PCA with ISOMAP

Figure 7: Swiss Roll Data with N = 1000

Figure 8: PCA

Figure 9: ISOMAP

Compare PCA with ISOMAP

Figure 10: Swiss Roll Data with N = 300

Figure 11: PCA

Figure 12: ISOMAP

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in \mathbb{R}^p , with respect to a density function $\alpha=\alpha(y)$. Let f be a C^2 -smooth isometric embedding of that region in \mathbb{R}^d . Given $\lambda,\mu>0$, for a suitable choice of neighborhood size parameter k, we have

$$1 - \lambda \leq \frac{\text{recovered distance}}{\text{original distance}} \leq 1 + \lambda$$

with probability at least $1-\mu$, provided that the simple size is sufficiently large [The formula is taken to hold for all pairs of points simultaneously].

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in \mathbb{R}^p , with respect to a density function $\alpha=\alpha(y)$. Let f be a C^2 -smooth isometric embedding of that region in \mathbb{R}^d . Given $\lambda,\mu>0$, for a suitable choice of neighborhood size parameter k, we have

$$1-\lambda \leq \frac{\text{recovered distance}}{\text{original distance}} \leq 1+\lambda$$

with probability at least $1-\mu$, provided that the simple size is sufficiently large [The formula is taken to hold for all pairs of points simultaneously].

• MDS is isometric C^2 -smooth embedding

Theorem (de Silva and Tenenbaum, 2002)

Let Y be sampled from a bounded convex region in \mathbb{R}^p , with respect to a density function $\alpha=\alpha(y)$. Let f be a C^2 -smooth isometric embedding of that region in \mathbb{R}^d . Given $\lambda,\mu>0$, for a suitable choice of neighborhood size parameter k, we have

$$1-\lambda \leq \frac{\text{recovered distance}}{\text{original distance}} \leq 1+\lambda$$

with probability at least $1-\mu$, provided that the simple size is sufficiently large [The formula is taken to hold for all pairs of points simultaneously].

- MDS is isometric C^2 -smooth embedding
- ISOMAP preserves distance (globally)

Some subregions must be locally stretched or shrunk in order to embed them in a lower-dimensional space

Some subregions must be locally stretched or shrunk in order to embed them in a lower-dimensional space

LLE Algorithm (Ghojogh et al., 2020)

Phase 1

Build Local Models

LLE Algorithm (Ghojogh et al., 2020)

Phase 1

Build Local Models

lacktriangle Use any distance metric to get the k-nearest neighbors for each point

LLE Algorithm (Ghojogh et al., 2020)

Phase 1

Build Local Models

lacktriangle Use any distance metric to get the k-nearest neighbors for each point

 N_i : k- nearest neighbors of i^{th} point

LLE Algorithm (Ghojogh et al., 2020)

Phase 1

Build Local Models

lacktriangle Use any distance metric to get the k-nearest neighbors for each point

 N_i : k- nearest neighbors of i^{th} point

For each point, identify the weighted sum of the neighbors that predicts the location of the point

LLE Algorithm (Ghojogh et al., 2020)

Phase 1

Build Local Models

lacktriangle Use any distance metric to get the k-nearest neighbors for each point

 N_i : k- nearest neighbors of i^{th} point

For each point, identify the weighted sum of the neighbors that predicts the location of the point

$$\hat{\mathbf{X}}_i = \sum_{\mathbf{X}_j \in \mathcal{N}_i} w_{ij} \mathbf{X}_j$$
 s.t. $\sum_{\mathbf{X}_j \in \mathcal{N}_i} w_{ij} = 1$

To calculate weights we minimise: $\sum_{i=1}^{N} ||\mathbf{X}_i - \hat{\mathbf{X}}_i||^2$

LLE Algorithm (Ghojogh et al., 2020)

Phase 2
Embedding

LLE Algorithm (Ghojogh et al., 2020)

Phase 2 Embedding

lacktriangled The same weights that reconstruct the data points in p dimensions should reconstruct it in the manifold in d dimensions

LLE Algorithm (Ghojogh et al., 2020)

Phase 2 Embedding

- **1** The same weights that reconstruct the data points in *p* dimensions should reconstruct it in the manifold in *d* dimensions
- 2 To minimise:

$$\left\| \mathbf{Y}_i - \sum_{\mathbf{Y}_j \in \mathcal{N}_i} w_{ij} \mathbf{Y}_j \right\|^2$$

LLE Algorithm (Ghojogh et al., 2020)

Phase 2 Embedding

- **1** The same weights that reconstruct the data points in *p* dimensions should reconstruct it in the manifold in *d* dimensions
- 2 To minimise:

$$\left\| \mathbf{Y}_i - \sum_{\mathbf{Y}_j \in \mathcal{N}_i} w_{ij} \mathbf{Y}_j \right\|^2$$

Equivalent to minimise:

$$(\mathbf{Y}^T(I-\mathbf{W})^T(I-\mathbf{W})\mathbf{Y})$$
 subject to $\frac{1}{N}\mathbf{Y}^T\mathbf{Y}=I$

LLE Algorithm (Ghojogh et al., 2020)

Phase 2 Embedding

- f 1 The same weights that reconstruct the data points in p dimensions should reconstruct it in the manifold in d dimensions
- 2 To minimise:

$$\left\| \mathbf{Y}_i - \sum_{\mathbf{Y}_j \in N_i} w_{ij} \mathbf{Y}_j \right\|^2$$

Equivalent to minimise:

$$(\mathbf{Y}^T(I-\mathbf{W})^T(I-\mathbf{W})\mathbf{Y})$$
 subject to $\frac{1}{N}\mathbf{Y}^T\mathbf{Y}=I$

3 Solving Lagrangian we can get,

Y is the *eigenvectors* of
$$(I - \mathbf{W})^T (I - \mathbf{W})$$

Figure 13: Applying LLE to a synthetic data

Diffusion Map

Idea: If we take random walk on the data then walking at nearby point is more likely.

Diffusion Map Algorithm

- **1** Similarity Matrix L : $L_{i,j} = k(x_i, x_j)$
- ② Normalize the matrix according to parameter $\alpha: L^{(\alpha)} = D^{-\alpha}LD^{-\alpha}$ where $D_{i,i} = \sum_i L_{i,j}$
- **3** Form the normalized matrix $M = (D^{(\alpha)})^{-1} L^{(\alpha)}$ where $D^{(\alpha)}$ is a diagonal matrix and $D_{i,i}^{(\alpha)} = \sum_{j} L_{i,j}^{(\alpha)}$.

Diffusion Map

Idea: If we take random walk on the data then walking at nearby point is more likely.

Diffusion Map Algorithm

- Compute the d largest eigenvalues of M^t and the corresponding eigenvectors.
- Use diffusion map to get the embedding Ψ_t where $\Psi_t(x) = (\lambda_1^t \psi_1(x), \lambda_2^t \psi_2(x), \dots, \lambda_d^t \psi_d(x))$
- Thus we get the diffusion map from the original data to a *d*-dimensional space which is embedded in the original space.

Minimize the KL divergence between high and low dimensional affinities $p_{ij} \ \& \ q_{ij}$

Minimize the KL divergence between high and low dimensional affinities $p_{ij} \ \& \ q_{ij}$

$$\mathcal{L} = \sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

High penalty for putting close neighbour far away

t-SNE Algorithm

High-dimensional similarities:

$$p_{j|i} = \frac{\exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{k}\right\|^{2} / 2\sigma_{i}^{2}\right)}$$

- ② Then symmetrize and normalize to sum to one: $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$
- Substitution of the sub

$$q_{ij} = \frac{w_{ij}}{Z}, \quad w_{ij} = k(\|\mathbf{y}_i - \mathbf{y}_j\|), \quad Z = \sum_{k \neq l} w_{kl}$$

t-SNE Algorithm

• High-dimensional similarities:

$$p_{j|i} = \frac{\exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{k}\right\|^{2} / 2\sigma_{i}^{2}\right)}$$

- ② Then symmetrize and normalize to sum to one: $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$
- Substitution of the sub

$$q_{ij} = \frac{w_{ij}}{Z}, \quad w_{ij} = k(\|\mathbf{y}_i - \mathbf{y}_j\|), \quad Z = \sum_{k \neq l} w_{kl}$$

4 SNE: $k(d) = \exp(-d^2)$ and t-SNE: $k(d) = 1/(1+d^2)$

t-SNE Algorithm

• High-dimensional similarities:

$$p_{j|i} = \frac{\exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{k}\right\|^{2} / 2\sigma_{i}^{2}\right)}$$

- ② Then symmetrize and normalize to sum to one: $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$
- Substitution of the sub

$$q_{ij} = \frac{w_{ij}}{Z}, \quad w_{ij} = k(\|\mathbf{y}_i - \mathbf{y}_j\|), \quad Z = \sum_{l,l,l} w_{kl}$$

- **3** SNE: $k(d) = \exp(-d^2)$ and t-SNE: $k(d) = 1/(1+d^2)$
- $\bullet \mathcal{L} = -\sum_{i,j} p_{ij} \log q_{ij} = -\sum_{i,j} p_{ij} \log w_{ij} + \log \sum_{i,j} w_{ij}$
- Apply gradient descent

2-d Data (Half Moons Data)

(a) Actual data

2-d Data (Half Moons Data)

Figure 14: Comparison among six methods for half moon data (N = 100)

3-d Data (Swiss Roll)

(a) Actual data

3-d Data (Swiss Roll)

Figure 15: Comparison among six methods for swiss roll data (N = 500)

3-d Data (S-Curve Data)

(a) Actual data

3-d Data (S-Curve Data)

Figure 16: Comparison among six methods for S-curve data (N = 200)

Where is the problem?

Imagine a library with bookshelves (features) with two scenarios:

- Many shelves with few books (low spread-outness).
- Few shelves with books scattered across (high spread-outness).

Traditional methods (e.g., number of features) can't capture this "spread-outness." **Here's where fractal dimension comes in.**

Definition: q-Dimension

- Fractal dimension (DF) refers to dimensions of fractals (capacity, correlation, information). q-dimension unifies these.
- Suppose **y** is a random variable with DF F(.) and pdf f(.)
- For $\epsilon >$ 0, support of F is covered with a grid of cubes with edge length ϵ
- $N(\epsilon)$ be the number of cubes intersecting the support and p_i the probability of populated cubes:

$$D_q = \lim_{\epsilon \to 0} \frac{\left(\sum_{i=1}^{N(\epsilon)} p_i^q\right)}{(q-1)\log(\epsilon)}$$

• If the limit exists, D_q is the q-dimension of F.

Capacity Dimension

- Setting q = 0 in the q-dimension formula yields the capacity dimension (d_{cap}) .
- Focuses on the number of covering boxes $(N(\epsilon))$ as cube size (ϵ) shrinks.

$$d_{cap} = \lim_{\epsilon o 0} rac{\log(N(\epsilon))}{\log(\epsilon)}$$

Unlike other dimensions, it ignores individual point probabilities.

Application on a Synthetic Dataset

- Generation n=500 observation from $N(0, I_p)$ where I_p is a Identity matrix of order p=1000 and it is normalised.
- Oscillated Box Counting dimension is calculated by the above algorithm

Figure 17: Log-Log Plot

Box Counting Dimension Estimated: 16.77263

Application on Yale Dataset

Intrinsic dimension was found out to be 12

Application on Yale Dataset

Intrinsic dimension was found out to be 12

Methods	Accuracy(%)
PCA	24.637
Kernel PCA	24.637
MDS	14.285
Isomap	46.376
LLE	42.443
Diffusion maps	27.950
t-SNE	57.142

Table 1: Accuracy of 5-NN classifier for the dimension reduced data

Further Exploration

- Computational Complexity
- Estimation of Intrinsic Dimension

Further Exploration

- Computational Complexity
- Estimation of Intrinsic Dimension
- Use of non-linear modelling architecture after linear dimension reduction over Nonlinear dimension reduction?

Further Exploration

- Computational Complexity
- Estimation of Intrinsic Dimension
- Use of non-linear modelling architecture after linear dimension reduction over Nonlinear dimension reduction?
- Extensions of the NLDR methods to incorporate handling out-of-sample data

References

- S. Bernhard, S. Alexander, and M. Klaus-Robert. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, 10, 1998.
- V. de Silva and J. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. 2002.
- B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley. Locally linear embedding and its variants: Tutorial and survey. 2020.
- B. SchSlkopf, A. Smola, and K.-R. Mfiller. Kernel principal component analysis. 1997.
- C. Williams. On a connection between kernel pca and metric multidimensional scaling. 2002.