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Abstract

This report explores models and methods for analyzing dynamic networks, with a focus on

the dynamic stochastic block model (Dynamic SBM). Theoretical results are derived for the edge

density and its conditional evolution over time under a particular Dynamic SBM. Simulations are

conducted to verify the theoretical findings and investigate the distribution of edge densities at

large time points. Potential extensions to other network statistics and distributional properties

are discussed, highlighting avenues for further research in characterizing the dynamics of evolving

network structures.

1 Introduction

Networks are a mathematical representation of pairwise relationships or interactions among a set of

objects, wherein the objects are depicted as vertices (nodes) and edges (links) connect vertices that

share specific relationships. Examples of networks pervade various domains, such as the Internet,

social networks, and biological systems. Networks arise in natural, social, and information sciences

and in many other disciplines. The study of network data in Statistics has been a leading area of

research for the last decade and more (cf. Kolaczyk (2009)). Networks can be viewed from both

a static and as well as a dynamic viewpoint. In a static approach, a single snapshot of a network

is the object of interest, and in a dynamic approach, the changes in a network over time are

taken into consideration. The term ’dynamic’ is commonly employed in the context of networks to

describe systems where edges among vertices, and sometimes the vertices themselves, change over

time. While static methodologies emerged in the 1960s, particularly in sociology, the literature on

dynamic models is a more recent phenomenon. Comprehensive references on statistical modelling

of random graphs include Kolaczyk (2009), Goldenberg et al. (2010), and Snijders (2011).

A dynamic network can be conceptualized as a time-indexed graph G(t) = (V (t), E(t)), where

time t varies discretely or continuously, and V (t) represents the set of vertices at time t, while E(t)

denotes the presence or absence of edges between vertices (Kolaczyk (2009)) e.g. see Fig. (1) which

show real-world tortoise interaction network data set.

Consider a friendship network among school students in a class, with individuals as nodes, and

connections as edges. It would be more intuitive to look at the behaviour of this network over a pe-

riod of time, and observe how the friendship structure changes over time, as possibly some students

join or leave the class. The change in the network structure provides a lot of information about
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the edge-evolution processes, changes in communities/clusters in the network (if any), changes in

the sparsity of the network, etc. Examining dynamic networks facilitates comprehension of latent

graph evolution in specific problems, addressing realistic questions. However, this advantage is

counterbalanced by the need for more complex modelling compared to static networks.

Figure 1: Networks of burrow use to infer social associations in desert tortoise (Rossi and Ahmed

(2015))

In this context, this report will explore common approaches for modelling dynamic networks.

The extensive literature in this domain offers diverse techniques for capturing dynamic aspects. The

project delves into selected modeling methods, aiming to comprehend their dynamic characteristics.

In Section 2.1, the Dynamic Erdos Renyi model is introduced. Section 2.2 explores community

detection and statistical inferences using Dynamic Stochastic Block Models. Section 2.3 presents a

time series modeling approach, while Section 2.4 summarizes models for graph structure estimation

using Markov Random Fields. In section 3 we introduce descriptive summary statistics for networks

alongwith a few examples. Focusing on a particular summary statistic, section 4 presents edge

density of dynamic networks. Further on, section 4.1 presents few theoretical results of the edge

density based on the model introduced in 2.2. Finally, section 5 conducts few simualtions to verify

the theoretical results and pave a path for further exploration in the topic.
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2 Dynamic Network Models

Various techniques are available for incorporating the time-varying information into dynamic net-

works, and the selection of a method is influenced by factors such as data interpretation, accuracy,

the nature of the time-varying process of the network (discrete or continuous), and more. The cho-

sen method reflects the researcher’s perception of their system, an aspect that is often insufficiently

justified in their research works even though it is deeply associated with underlying assumptions of

the data. In particular, a researcher may majorly focus on the dynamic (the ”time-varying” aspect)

or the networks aspect in a model for dynamic networks. Such aspects of dynamic networks and

the assumptions on the form of data, the time-varying process and its evolutionary behaviour are

crucial to making statistical inferences about dynamic networks. In this section, we will explore

some common approaches for modelling dynamic networks.

2.1 Dynamic Erdos-Renyi Random Graph Model

The simplest model in the literature for networks is the Erdos-Renyi Random Graph Model (Erdős

and Rényi (1959)). In the Erdos-Renyi random graph G(N, p) model, a graph is constructed

by connecting N labelled nodes randomly. Each edge is included in the graph with probability

p ∈ (0, 1) independently from every other edge.

A very natural extension to the time-varying networks would be to let each edge of the network

evolve in a Markovian manner. The actual formalisation of this idea is proposed in Zhang et al.

(2017) wherein, each of the edges undergoes independent evolution. Specifically, an edge exists

for an exponential time with a parameter µ (referred to as the ’up-rate’) and disappears for an

exponential time with a parameter λ (referred to as the ’down-rate’). This model particularly

focuses on the estimation of rate at which edges appear and disappear in the network. If we denote

by p1(t) and p0(t) respectively the probabilities that there is and is not an edge between our nodes

at time t, then Zhang et al. (2017) prove via solving a differential equation that p1 can be given by

p1(t) =
λ

λ+ µ
− c e−(µ+λ)t

where c is an integration constant, λ is the rate (in continuous time) at which an edge appears

between two nodes where previously there was none, and µ is the rate at which an existing edge

disappears.

To address the limitation of independent edge evolution, modified Dynamic Erdős-Rényi graphs

were introduced in Mandjes et al. (2019) where the authors consider two variations in which the

edges evolve dependently. A basic underlying assumption here is that the number of nodes remains

fixed over time and the evolution in time is characterized in terms of the changes in edge-structure.

The authors manage to uniquely characterize their transient and stationary behaviour using the

probability generating function (PGF). In the continuous time model, the authors prove a functional
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central limit theorem for Y (t) which denotes the number of edges in the network at time t using a

process they call ”regime-switching”. The weak limit of the appropriately scaled Y (t) is given as

a solution to a stochastic differential equation. The authors also prove the central limit theorem

for their discrete-time model by embedding it into a specific explicit continuous-time model. The

authors also discuss several diffusion results under scaling and large deviation results for Y (t) for

both of their models.

2.2 Dynamic stochastic block models

The homogeneity of Erdos-Renyi is a drawback when modelling real-world networks. Node-specific

edge probabilities can be used to take into account the natural heterogeneity of the data and

summarise the data through node classification. Such structure allows to study the underlying

connection structure of the network. Proposed by Frank and Harary (1982), another popular

modelling approach in the case of static networks, particularly very useful for community detection

and clustering, is the Stochastic Block Model (SBM). The major idea behind the SBM is that the

probability of the existence of an edge between any two nodes of the network (with a fixed set of

nodes) depends only on the communities in which these nodes belong.

An extension to the static SBM using Markovian evolution of the node groups was proposed in

Matias and Miele (2017). Unlike earlier works that either combined SBMs with Markov structures

(e.g., Yang et al. (2011)) or utilized state space models (e.g., Xu and Hero (2014)), this model

uniquely separates these elements and revolutionizes node classification in evolving networks by

incorporating a model selection criterion for determining the optimal number of clusters. In this

model, the authors consider a set of fixed N vertices/individuals divided into Q latent groups

which may vary over time. This community membership is assumed to be a stationary, irreducible

and aperiodic Markov Chain which further determines the weights of each edge in the network

depending on the communities to which the vertices forming the edge are in. A brief mathematical

formulation for the model is given below,

In Matias and Miele (2017), the data matrices Y = (Y t)1≤t≤T represent weighted interactions

among N individuals observed over time, where T is the number of time points. Random variables

Z = (Zt
i )1≤t≤T,1≤i≤N with values in QNT := {1, ..., Q}NT encode the community to which each of

theN nodes belong to at each time instant. Each Zi is an i.i.d. random variable, and Zi = (Zt
i )1≤t≤T

is an irreducible, aperiodic stationary Markov chain with transition matrix πππ = (πqq′)1≤q,q′≤Q

and initial stationary distribution ααα = (α1, · · · , αQ).Given latent groups Z, Y = (Y t)1≤t≤T are

independent, and the conditional distribution of each Y t depends only on Zt. Thus for each fixed t,

the random graph Y t follows a Stochastic Block Model (SBM), where (Y t
ij)1≤i<j≤N are independent

given Zt and the distribution of each Y t
ij depends on only Zt

i and Zt
j . The model is then given by
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the distribution:

Y t
ij |{Zt

iqZ
t
jl = 1} ∼ (1− βt

ql)δ0(·) + βt
qlF (·, γtql) (1)

where {F (·, γ), γ ∈ Γ} is a parametric family of distributions, and f(·, γ) represents their densities
(Dirac mass at 0 (δ0) is introduced to accommodate sparse weighted graphs e.g. see Ambroise and

Matias (2012)). The model is parameterized by

θ = (πππ,βββ,γγγ) = (πππ, {βt, γt}1≤t≤T ) = ({πqq′}1≤q,q′≤Q, {βt
ql, γ

t
ql}1≤t≤T,1≤q≤l≤Q) ∈ Θ

and the probability distribution is denoted as Pθ on the space QN×RN. The authors provide weak

and strong identifiability conditions for the model parameters to tackle non-identifiability in the

model and label switching issues.

Since the conditional distribution Z|Y does not have a factored form, the Variational Expecta-

tion Maximation (VEM) algorithm (see e.g. Jordan et al. (1999), Gunawardana and Byrne (2005),

Celisse et al. (2012))is then used for estimation of model parameters. The model selection on num-

ber of groups Q is done by maximising the integrated classification likelihood (ICL) criterion given

by

ICL(Q) = log{Pθ̂Q
(Y, Ẑ)} − 1

2
Q(Q− 1) log{N(T − 1)} − pen(N,T,βββ,γγγ)

where for any number of groups Q ≥ 1, θ̂Q is the estimated parameter value with Q groups, Ẑ

the corresponding maximum a posteriori classification at θ̂Q, the first penalization term accounts

for transition matrix πππ and pen(N,T,βββ,γγγ) is a penalizing term for the connectivity parameters

(βββ,γγγ). The initial number of groups for the VEM procedure are chosen via k-means clustering

applied to the rows of a concatenated data matrix comprising all adjacency time step matrices Y t

stacked in consecutive column blocks. This initialization strategy excels when group memberships

exhibit limited variation across time, and for larger values of T , the model initialization described

in the paper may yield inaccurate inferences. Matias and Miele (2017) applied their dynamic

Stochastic Block Model (SBM) to analyze various dynamic contact networks. They studied face-

to-face interactions among high school students (Fournet and Barrat (2014); T = 4), sparrow

interactions (Shizuka et al. (2014); T = 3), and Onager associations (Rubenstein et al. (2015);

T = 4). The model effectively captured network dynamics in diverse datasets, demonstrating its

potential for broader applications in dynamic network analysis.

Prior dynamic Stochastic Block Models (SBM) like those in Matias and Miele (2017), Fu et al.

(2009), Yang et al. (2011), and Xu and Hero (2014) assume discrete-time dynamics for both com-

munity membership and network evolution, with independent SBMs at each time step. Ludkin

et al. (2018) proposed the autoregressive SBM (ARSBM), a continuous-time extension that relaxes

this independence assumption and allows modelling networks with unequal observation intervals.

This enables the handling of irregularly observed or incomplete data more effectively compared to

discrete-time models.
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In the context of ARSBM, the node set V with |V | = N is partitioned into a fixed number

of communities Q. A continuous-time Markov chain (CTMC) Ci(·), taking values in 1, 2, . . . , Q is

defined as: Ci(t) = k if individual i belongs to community k at time t. It is assumed that irrespec-

tive of the current community, a node spends exponential Exp(λ) time in this community before

transitioning uniformly at random to a new community (this assumption is subject to relaxation).

Additionally, all edges connecting nodes across different communities share similar dynamics (this

assumption can also be relaxed). The network dynamics involve Q+1 processes: one for each com-

munity k, governing edges (i, j) where Ci(t) = Cj(t) = k, and one for edges between communities,

governing edges (i, j) where Ci(t) ̸= Cj(t). The community membership process Cij(·) is defined

as Cij(t) = Ci(t) if Ci(t) = Cj(t) and 0 otherwise. The edge status process Eij(·) is defined as

Eij(t) = 1 if an edge exists between nodes i and j at time t, and 0 otherwise. The edge process

follows a piecewise time-homogeneous CTMC, with the generator matrix given by

(
−αk αk

δk −δk

)
,

where αk (appearance rates) governs edge appearance in community k, and δk (deletion rates)

governs the transition from state 1 to 0. Observations are collected as network snapshots of N

nodes at time points t = (t0, t1, . . . , tT ) in the interval [t0, tT ]. The states Eij(ts) are observed for

s = 0, 1, . . . , T and i ̸= j; i, j ∈ 1, . . . , N . For brevity, let esij = Eij(ts), c
s
i = Ci(ts) (latent variable),

and ∆s = ts − ts−1. Define e(t) = esij |1 ≤ i < j ≤ N, s = 0, 1, . . . , T as the set of all network snap-

shot data. Similarly, let ci(t) = csi |s = 0, 1, . . . , T represent the community membership of node

i at each observation time, with c(t) = ci(t)|i = 1, 2, . . . , N as the set of all community member-

ships. Define πk = αk/(αk + δk), ρk = αk + δk, πππ = (π0, π1, . . . , πK), and ρρρ = (ρ0, ρ1, . . . , ρK).

The focus of the model is on the joint posterior distribution π(θθθ, c(t)|e(t)), where θθθ = (λ,πππ,ρρρ) and

c(t0) = (c01, c
0
2, . . . , c

0
N ).

The community membership process is modelled as piecewise constant, requiring knowledge of

changepoints τττ i = (τ1i , · · · , τ
Mi
i ) and community memberships at these points, ci(τττ i), with c(τττ) =

(c1(τττ1), · · · , cN (τττN )). Since the number of changepoints is assumed to be unknown, employing

Reversible Jump MCMC (RJMCMC) with data augmentation, samples are drawn from the joint

distribution of θθθ = (λ,πππ,ρρρ) and c(t) given e(t) and augmented data (τττ , c(τττ), e(τττ)).

A critical distinction between ARSBM and dynSBM lies in their suitability for different types

of dynamic network data. dynSBM excels at modeling networks where edges represent transient

”interactions” (e.g., e-mail, text message, phone call, etc.), while ARSBM is better suited for ”re-

lationships” that persist over time (e.g., friendships, collaborations). This distinction aligns with

their temporal characteristics: ARSBM operates in continuous time, capturing gradual relation-

ship evolution, while dynSBM adopts discrete time steps, ideal for frequent interaction events.

Furthermore, dynSBM follows a parametric approach, assuming edge weights come from specific

probability distributions. In contrast, ARSBM utilizes a more general probabilistic generative

modelling approach. Despite these differences, both models share key features: fixed node count
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(N) and independent edge evolution. This renders them valuable tools for statistical analysis of

dynamic networks, with the optimal choice depending on the specific data and research question.

Most of the time-dependent networks we have seen until now are usually handled via generative

models that assume some probabilistic mechanism which governs the evolution of the network in

time. Moreover only a few papers (e.g. see Han et al. (2015), Gao et al. (2015), Gao et al. (2016),

Klopp et al. (2017)) discuss estimation precision or minimax lower bounds for the risk of estimation

of the matrix of connection probabilities.

Pensky (2019) presented the first non-parametric-regression-based Dynamic SBM (DSBM)

model based on the smooth evolution of the tensor G of connection probabilities between com-

munities. The Dynamic Stochastic Block Model (DSBM) tackles the challenge of estimating con-

nection probabilities in time-varying networks. It achieves this through efficient data represen-

tation, redundancy removal, and a penalized least squares approach. The paper considers a dy-

namic network defined as an undirected graph with N nodes, grouped into m classes Ω1, · · · ,Ωm,

with connection probabilities changing in time. For simplicity, it’s assumed that time instants

0 < t1 < · · · < tL = T are equispaced and the time interval is scaled to one, i.e. tl = l/L. For all

i, j ∈ {1, · · · , N}, 1 ≤ l ≤ L, define Bi,j,l as:

Bi,j,l =

1, if a connection between nodes i and j is observed at time tl

0, otherwise

with Bi,i,l = 0, and Bi,j,l = Bj,i,l. The paper derives penalized least squares estimators of ΛΛΛ

(where ΛΛΛi,j,l = P(Bi,j,l = 1), ΛΛΛi,i,l = 0). Moreover, under the assumption that only at most n0 nodes

can change their memberships between two consecutive time points, the author derives minimax

lower bounds for the risk of an estimator of ΛΛΛ. The paper makes a reasonable assumption that the

connection probabilities do not change dramatically from one time instant to another. Specifically,

it assumes that the connection probabilities are values of some smooth function evaluated at time

instant tl = l/L ∈ (0, 1] which is a very common assumption in functional data analysis, the analysis

of data providing information about curves, surfaces or anything else varying over a continuum.

The paper allows group membership switching and enables one to exploit stability in the group

memberships over time. Moreover, the estimators constructed in the paper adapt to any number of

blocks inherent in the dynamic network data, since the estimation of the number of blocks happens

simultaneously using the penalty in the optimization function.

The core data structure is the tensor ΛΛΛ, which stores connection probabilities for all nodes

and time points. The DSBM decomposes this tensor using the clustering matrix Z̃(l) and a low-

complexity tensor G∗,∗,l at each time point. This decomposition leverages the inherent structure

of the data, where nodes belong to certain groups with specific connection patterns. However, the

raw representation still contains redundancies. The model exploits symmetries and sparsity in ΛΛΛ

to remove redundant information from vectors and matrices representing connection probabilities.
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This significantly reduces computational complexity and improves estimation efficiency.

Furthermore, the DSBM captures the dynamic nature of the network by assuming smooth

changes in connection probabilities over time. These changes are modelled using orthogonal basis

functions, such as Fourier or wavelet transforms, allowing for an efficient representation of dynamic

patterns with a sparse vector d. Finally, the model formulates an optimization problem using

penalized least squares to estimate key parameters. These include the number of clusters, the

active entries (non-zero entries) in d, and the block-diagonal matrix C. C ∈ {0, 1}NL×ML is a

block diagonal matrix with blocks C(l), l = 1, . . . , L, on the diagonal where C(l) is obtained by

removing the rows in (Z̃(l) ⊗ Z̃(l)) corresponding to (Z̃
(l)
i1,∗ ⊗ Z̃

(l)
i2,∗) with i1 ≥ i2. The penalty term

in the optimization balances model fits with sparsity in the active entries of d, ensuring both

accurate estimation and efficient representation of the dynamic network. It is shown that the

correct penalty consists of two parts: the portion which accounts for the complexity of estimation

and the portion which accounts for the complexity of clustering and is proportional to the logarithm

of the cardinality of the set of clustering matrices. The latter is a novel result and it is obtained by

using the innovative Packing lemma (Lemma 4 of the paper Pensky (2019)) which can be viewed

as a version of the Varshamov-Gilbert lemma for clustering matrices In summary, the DSBM

effectively models and estimates connection probabilities in time-varying networks by exploiting

data structure, removing redundancies, and incorporating dynamic changes through efficient sparse

representations. This approach offers a computationally efficient and statistically sound solution

for analyzing dynamic network data.

The paper also discusses possible extensions that can be made to the modelling approach to

incorporate more levels of complexity. It is assumed in the paper that probabilities of connections

are spatially homogeneous and are represented by smooth functions of time that belong to the same

Sobolev class. The author claims that this can however be generalized to have inhomogeneous or

non-smooth connection probabilities as well. The author also presents a brief idea of how dynamic

networks with a time-dependent number of nodes can be handled by extending the proposed model.

2.3 Models as time series of networks

Existing approaches to modeling dynamic networks often incorporate temporal dynamics into pre-

defined network structures. Alternatively, one can model the network itself as a time series. Node-

based time series models exist, such as vector autoregression, where a node’s value depends on

its own past and connected neighbours’ past values (Zhu et al. (2017)). GNAR models (Knight

et al. (2020)) extend this by including larger neighbourhood effects. These methods, however, as-

sume fixed network structures. Both studies assume a fixed network structure across time. Few

other studies (e.g. see Kang et al. (2021), Zhu et al. (2019), Chen et al. (2023)) extend/discover

new variations of modelling the dynamic networks as time series models over the nodes. In con-
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trast, GNAR-edge (Mantziou et al. (2023)) focuses on time series observed on edges, motivated by

industry transaction data represented as time-varying edge weights between SIC codes. This ap-

proach treats network relationships themselves as dynamic entities, offering a distinct perspective

for modelling evolving network structures.

In the multiple time series setting, we observe time series of some fixed length T for different

variables i = 1, ...,K. Let Xt
i denote the value of variable i at time t = 1, ..., T . The VAR(L) model

is an autoregressive model with maximum lag L, that has the following linear form,

Xt
i = vi + αi1,1X

t−1
1 + αi2,1X

t−1
2 + ...+ αiK ,1X

t−1
K + ...+

αi1,LX
t−L
1 + ...+ αiK,LX

t−L
K + uti, i = 1, ...,K (2)

with intercept vi, coefficients αij,l , j = 1, ...,K, l = 1, ..., L, and the innovations (ut1, ..., u
t
K)t =

1.....T. being a K-dimensional white noise. Equation 2 can be written compactly in vector form.

The GNAR-edge model addresses directed networks on N nodes with possible self-loops, repre-

sented by the adjacency matrix A. GNAR-edge model assumes a fixed graph G and a time-varying

process on E through the matrix-valued process Vt, t ≥ 0 of non-negative weights. The time-

varying weighted adjacency matrix Xt = A ⊙ Vt is defined, with ⊙ denoting the element-wise

product, or Hadamard product, between matrices A and V and Xt
ij representing the weight of

edge {i, j} at time t. Define the set of 1-stage neighbouring edges for some edge {i, j} as the set

of all edges which are incident to at least one of the nodes i, j; formally, N 1({ij}) = {{k, l} ∈
δ+(i) ∪ δ−(i) ∪ δ+(j) ∪ δ−(j) : {k, l} ≠ {i, j}} with δ+(·), δ−(·) denoting the sets of outgoing and

incoming edges of a node, respectively. For r ≥ 2 we define the set of r-stage neighbouring edges

of the edge {i, j} as the set N r({i, j}) = N{N r−1({i, j})} \ [{{i, j}} ∪ {∪r−1
q=1N q({i, j})}]. As the

network is fixed, these sets do not depend on time. It is assumed that the weight Xt
ij of an edge

between nodes i, j at time t depends not only on its past values but also on the past values of its

neighboring edges. The model, denoted as GNAR-edge(L, [R1, . . . , RL]), considering a maximum

lag L and Rl denoting the maximum stage neighbours for lag l, expresses Xt
ij as a function of its

past values and past values of its neighbouring edges:

Xt
ij =

L∑
l=1

αij,lX
t−1
ij +

Rl∑
r=1

βl,r
∑

m,n:{m,n}∈N r({i,j})

wij,mnX
t−1
mn

+ utij

where αij,l denotes the standard autoregressive parameters at lag l for edge {i, j}, βl,r denotes the

parameters for the effect of r-stage neighboring edges at lag l, Wij,mn = |N r({i, j})|−1 denoting

the normalizing weight for Xt−1
mn which equally weights all neighboring edges of edge {i, j} at lag l,

and uij,t denoting white noise with mean 0 and variance σ2. The model is formulated as a linear

matrix model, and OLS estimators are calculated. The authors provide a sufficient condition for

the model to be stationary and assume αij,l = αl ∀ i, j ∈ V to reduce model complexity for large

networks.
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The GNAR-edge model’s performance was evaluated through simulations on various network

structures (Erdos-Renyi, SBM, RDP graphs) and under different network time series scenarios

(heavy-tailed noise, correlated innovations, misspecified connectivity). Parameter estimation ac-

curacy remained consistent across network types, showcasing the model’s robustness. Further,

model misspecification effects were explored for different network sizes. Additionally, a real-world

application on industry transaction data demonstrated a good fit to the GNAR-edge model, with

limitations in capturing larger peaks. Sparsification via lead-lag analysis and trend removal were

employed before model fitting.

2.4 Other modelling approach

Motivated by challenges in understanding complex systems like gene regulatory networks and stock

markets, where real-time network data is often unavailable, Kolar et al. (2010) propose leveraging

Markov Random Fields (MRFs) to infer these time-varying networks. The key hurdle lies in the

absence of serial snapshots of the underlying networks, making traditional methods inapplicable

e.g. in the context of gene regulatory networks, the task is to reconstruct the dynamic interactions

between genes based on microarray measurements of their expression levels across various develop-

mental stages. The focus of Kolar et al. (2010) is to estimate dynamic network structure from a

time series of entity attributes.

Consider a graph G = (V,E) where V = {1, · · · , N} represents entities (e.g., stocks, genes),

and E denotes relationships (e.g., correlation, friendship). Each node in V corresponds to an

element of a random vector X = (X1, · · · , XN ) with a probability distribution indexed by θ ∈
Θ. In the Markov Random Field (MRF) framework, nodal states are discrete, i.e., X ∈ XN ≡
{s1, · · · , sk}N and the edge set E ⊂ V × V encodes conditional independence assumptions of

whether Xu is conditionally independent of Xv given the rest of the variables if (u, v) /∈ E. Kolar

et al. (2010) analyzes a special kind of MRF known as the Ising model (with X ∈ {−1, 1}), under
which: Pθ(x) =

1

Z
exp{

∑
u<v

θuvxuxv}, where Z denotes the partition function, and the pairwise

potentials θuv represent interactions between nodes for all (u, v) ∈ E and θuv = 0 otherwise. The

main objective in Kolar et al. (2010) is to estimate the time-varying graph structures of MRFs

from a time series of nodal states {xt}t∈Tn , with Tn = {1/n, 2/n, · · · , 1} being the time index

set, that are independent (but not identically distributed) samples from a series of time-evolving

MRFs {Pθt(·)}t∈Tn which is a much more challenging and more realistic scenario than the one

that assumes that the nodal states are sampled i.i.d. from a time-invariant MRF (Bresler et al.

(2018),Ravikumar et al. (2010)). Let Dn = {xt ∼ Pθθθt |t ∈ Tn} be an independent sample of n

observations. It is assumed that Xt is a N -dimensional random variable with values in {−1, 1}N

following a distribution given by Pθθθt(x) =
1

Z(θθθt)
exp {

∑
(u,v)∈Et

θtuvxuxv}, where Z(θθθt) is the partition
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function, θθθt ∈ R(
N
2 ) is the parameter vector, and Gt = (V,Et) is an undirected graph representing

conditional independence assumptions. Kolar et al. (2010) addresses the problem of graph structure

estimation from observational data: given any time point τ ∈ [0, 1] estimate the graph structure

associated with Pθθθt , given the observations Dn, by focusing on estimating the non-zero pattern of

the vector θθθτ . Define θθθτu := {θτuv|v ∈ V \ u} and Sτ (u) := {(u, v) ∈ V × V |θτuv ̸= 0}. The paper

focuses on obtaining node-wise estimators θ̂θθ
τ

u of the non-zero pattern of the subvector θθθτu. Due to

possible asymmetry in the estimated non-zero pattern (θ̂τuv = 0, but θ̂τvu ̸= 0), two symmetrization

methods are suggested to arrive at a combined estimator θ̃θθ
τ
: min symmetrization (θ̃uv = θ̂uv if

|θ̂uv| < |θ̂vu|, else θ̂vu) and max symmetrization (θ̃uv = θ̂uv if |θ̂uv| > |θ̂vu|, else θ̂vu)..

The estimator θ̂θθ
τ
is obtained by maximizing the pseudo-likelihood based on the conditional

distribution of Xτ
u given other variables Xτ

\u = {Xτ
v |v ∈ V \ u}, wherein the distribution is given

by

Pθθθτu(x
τ
u|Xτ

\u = xτ
\u) =

exp(xτu⟨θθθτu,xτ
\u⟩)

exp(xτu⟨θθθτu,xτ
\u⟩) + exp(−xτu⟨θθθτu,xτ

\u⟩)

In the absence of assumptions about θθθt, the estimation problem becomes ill-posed when the number

of observations is small compared to the dimensionality. To address this, assuming sparse graphs

{Gt}t∈Tn is a common strategy. Furthermore, the paper explores two ways to constrain the pa-

rameter vector θθθt over time: Smooth changes in parameters and piecewise constant with abrupt

structural changes in parameters. The authors discuss in detail the procedure of estimation of the

parameters in both these cases. Parameter tuning is done via BIC score defined in the paper where

the degrees of freedom in the model are approximated appropriately.

Simulation studies on Erdos Renyi graphs revealed that MIN symmetrization tends to be more

conservative in edge inclusion and is sensitive to noise. The model’s application extended to Senate

voting data from the 109th Congress and a gene expression dataset of Drosophila melanogaster’s

life cycle. The paper establishes, following Kolar. and Xing (2009), that asymptotic recovery of the

graph is possible with an appropriate regularization parameter, given moderate model dimensions,

maximum node degrees, and a non-rapid decline of the minimum parameter value to zero. Notably,

Kolar et al. (2010) assumed independence of observations at different time points, suggesting future

research avenues in graph structure estimation from dependent time series data. An extension to

accommodate multi-category data is also suggested (Ravikumar et al. (2010)).

3 Network Summary Statistics

Networks or graphs are used to model and study complex systems across many domains. While

visually inspecting a network can provide some intuition, but as soon as the number of nodes

and edges increase beyod a certain amount, it becomes impossible to analyse the network visually.

Numerical summary statistics allow us to quantitatively capture key topological properties in a

11
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concise manner. These statistics serve several important purposes:

1. Summarizing Structure: Networks can be large and intricate, making them difficult to

comprehend visually. Summary statistics distill the vast structural information into inter-

pretable numeric values, enabling compact representations and comparisons.

2. Identifying Patterns: By quantifying specific features like centrality, degree distributions,

or subgraph counts, summary statistics help identify and measure structural patterns that

may reveal underlying organizational principles or dynamics of the system.

3. Testing Hypotheses: Summary statistics can be compared against theoretical models or

benchmarks to test hypotheses about the processes governing a network’s formation, evolu-

tion, or behavior.

4. Characterizing Networks: These statistics provide a quantitative basis for characterizing

and contrasting the topologies of different networks or snapshots of an evolving network over

time.

5. Guiding Modeling: When developing generative network models, summary statistics from

real-world networks indicate which topological properties the models should reproduce accu-

rately.

However, some drawbacks exist:

1. Information Reduction: Summarizing a complex structure risks losing potentially impor-

tant details or outliers relevant to analysis.

2. Instability: Certain statistics may be highly sensitive to minor perturbations in the network

data.

3. Context Dependence: The utility of a statistic depends on the network type and research

context studied.

4. Descriptive Nature: Traditionally, these statistics describe but do not directly support

inferential conclusions about processes underlying an observed network.

Despite limitations, descriptive summary statistics provide an invaluable quantitative lens into

network topology, underpinning further analysis, hypothesis testing, and model development. A

key statistic explored in this thesis is the edge density.

12
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3.1 Examples of network summary statistics

• Degree distribution: The degree distribution is a fundamental summary statistic in network

analysis that characterizes the connectivity patterns within a network. It represents the

probability distribution of the degrees of nodes, where the degree of a node is the number

of connections or edges it has to other nodes. For static networks, the degree distribution

provides a compact representation of the overall level of connectivity and the variability in

the number of connections across nodes. In dynamic networks that evolve over time, the

degree distribution becomes a time-varying quantity, capturing the temporal characteristics

of the network’s connectivity patterns.

The degree distribution serves several important purposes in network analysis:

– Identifying structural patterns and features, such as the presence of hubs or hierarchical

organization.

– Comparing observed networks against theoretical models or random graph ensembles.

– Characterizing the generative processes and mechanisms underlying network formation

and evolution.

– Detecting changes, trends, or regime shifts in the connectivity dynamics of temporal

networks.

As a fundamental statistic, the degree distribution provides a quantitative basis for under-

standing the topological properties of networks and their implications for processes occurring

on or driven by the network structure, such as diffusion, influence propagation, or resilience

to disruptions.

• Degree centrality: In network analysis, degree centrality is a measure that quantifies the

importance or influence of a node based on the number of connections it has within the

network. For static networks, degree centrality is simply the degree (number of edges) of

the node. However, in dynamic networks where connections are continuously formed and

dissolved over time, the degree centrality of a node becomes a time-varying quantity.

The time-varying degree centrality captures how the importance or connectivity of a node

evolves as the network topology changes dynamically. Tracking the degree centrality of nodes

over time enables the analysis of phenomena such as:

– Identification of influential or prominent nodes whose centrality exhibits significant

changes or distinct temporal patterns.

– Characterization of node-level connectivity dynamics and their relation to local network

processes or external factors.

13
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– Detection of critical events, shifts, or anomalies in the network structure based on sudden

changes in node centralities.

– Modeling and prediction of future centrality trajectories, which can inform applications

like influence maximization or network control.

As a fundamental centrality measure, the time-varying degree centrality provides insights into

the dynamic roles and positions of nodes within an evolving network topology, enabling the

analysis of processes driven by connectivity patterns, such as information diffusion, disease

spread, or the robustness of the network to targeted attacks or failures.

• Motif Counts: Motif counts quantify the occurrences of specific subgraph patterns, or

motifs, within a network. In dynamic networks where the topology evolves over time, motif

counts become time-varying quantities that capture the dynamics of these recurring structural

patterns.

Tracking the temporal evolution of motif counts enables the analysis of:

– Identifying characteristic motif signatures and their changes, which can reveal underlying

generative mechanisms or constraints governing the network dynamics.

– Detecting temporal correlations, periodicity, or regime shifts in the formation and dis-

solution of specific motif types, potentially linked to external factors or critical events.

– Comparing motif distributions across different dynamic networks or time periods to

uncover similarities or differences in their organizational principles or evolution patterns.

– Modeling and predicting future motif counts, which can inform applications such as

network growth forecasting or the design of dynamic processes constrained by specific

motif patterns.

As informative descriptors of local connectivity structures, time-varying motif counts provide

a lens into the co-evolution of network topology and dynamics, enabling the analysis of pro-

cesses governed by or embedded within these recurring building blocks of complex networks.

In the rest of the report we will be discussing about another particular network summary

statistic called the edge density.

4 Edge Density

Edge density stands as a fundamental metric in network analysis, providing a concise measure of

connectivity within a network. The properties like size and density of a network are conceptually

similar to the mass and composition of matter—they just tell us how much stuff is in it, but
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they don’t tell us anything about how the matter is organized internally. Nonetheless, they are

still the most fundamental characteristics, which are particularly important when you want to

compare multiple networks. Analogous to assessing traffic flow on a congested highway, edge

density quantifies the proportion of actual connections present to the total possible connections

within a network.

The density of a network is the fraction between 0 and 1 that tells us what portion of all possible

edges are realized in the network. For a network G made of n nodes and m edges, the density ρ(G)

is given by

ρ(G) =
m

n(n−1)
2

=
2m

n(n− 1)

for an undirected network, or

ρ(G) =
m

n(n− 1)

for a directed network. The density of a network in graph theory or network science refers to the

measure of how closely connected the nodes are in a graph. It quantifies the number of edges

present in the graph relative to the total number of possible edges. A dense network has a high

density, indicating that a large proportion of possible connections between nodes are present. Dense

networks are often observed in various domains such as on-line social networks, recommendation

networks, and the brain. The density of a graph can be used as a topological descriptor to partition

the nodes into regions of uniform density, providing insights into the structure of the network. The

concept of density is also used in the context of finding disjoint spanning trees and subgraphs

in a graph. The density of a network can influence its spectral density, which is important for

understanding the behavior of models defined on graphs

Note that the size and density of a network don’t specify much about the network’s actual

topology(i.e. shape). There are many networks with different topologies that have the same size

and density. But there are some things the size and density can still predict about networks. One

such example is network percolation, i.e., whether or not the nodes are sufficiently connected so

that they form a giant component that is visible at macroscopic scales. A giant component is a

connected component whose size is on the same order of magnitude as the size of the whole network.

4.1 Results on edge density of Matias and Miele (2017)’s model

Among several different models available for dynamic networks, we discussed a handful of them

earlier. To better understand the evolution of edge density we will focus on one of the above-

discussed particular models namely the one by Matias and Miele (2017). To better understand the

model first, we find the dependence of each edge evolution over time as in (4.1.1).
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4.1.1 Conditional Distribution Y
(t)
ij |Y (t−1)

ij

Consider the dynSBM model with N nodes, Q communities and T discrete time steps. The com-

munity memberships Z
(t)
i follow an irreducible, aperiodic, and ergodic Markov chain. Let the

transition matrix for these community memberships be η. Also, assume that the different nodes

have independent and identically distributed (i.i.d.) community memberships for all time steps t.

The initial state of any node is sampled from an initial distribution
(
α1 α2 · · · αQ

)
. We wish to

find the conditional distribution Y
(t)
ij |Y (t−1)

ij = 1 and Y
(t)
ij |Y (t−1)

ij = 0.

First consider finding P(Y (t)
ij = 1|Y (t−1)

ij = 1)

Note that

P(Y (t)
ij = 1|Y (t−1)

ij = 1) =

Q∑
q,l=1

P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l)

P(Z(t−1)
i = q, Z

(t−1)
j = l|Y (t−1)

ij = 1)

First, consider

P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l)

=

Q∑
r,s=1

P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l, Z

(t)
i = r, Z

(t)
j = s)

P(Z(t)
i = r, Z

(t)
j = s|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l)

But, given the current community memberships at time t of both the nodes, the distribution of

Y
(t)
ij is completely determined and independent of Y

(t−1)
ij

P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q,Z

(t−1)
j = l, Z

(t)
i = r, Z

(t)
j = s)

= P(Y (t)
ij = 1|Z(t)

i = r, Z
(t)
j = s)

= β(t)
rs

Thus P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l, Z

(t)
i = r, Z

(t)
j = s) = β

(t)
rs .

And,

P(Z(t)
i = r, Z

(t)
j = s|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l)

= P(Z(t)
i = r|Z(t−1)

i = q)P(Z(t)
j = s|Z(t−1)

i = l)

= ηqrηls
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∴ P(Y (t)
ij = 1|Y (t−1)

ij = 1, Z
(t−1)
i = q, Z

(t−1)
j = l) =

Q∑
r,s=1

β(t)
rs ηqrηls

= (ηΛtη
′)ql

where 1 ≤ t ≤ T , Λt =
((

β
(t)
ql

))Q
q,l=1

Now, by Bayes rule,

P(Z(t−1)
i = q, Z

(t−1)
j = l|Y (t−1)

ij = 1)

=
P(Y (t−1)

ij = 1|Z(t−1)
i = q, Z

(t−1)
j = l)P(Z(t−1)

i = q, Z
(t−1)
j = l)

Q∑
k,m=1

P(Y (t−1)
ij = 1|Z(t−1)

i = k, Z
(t−1)
j = m)P(Z(t−1)

i = k, Z
(t−1)
j = m)

=
β
(t)
ql P(Z

(t−1)
i = q)P(Z(t−1)

j = l)

Q∑
k,m=1

β
(t)
kmP(Z(t−1)

i = k)P(Z(t−1)
j = m)

=
β
(t)
ql P(Z

(t−1)
i = q)P(Z(t−1)

j = l)

(
P(Z(t−1)

i = 1) P(Z(t−1)
i = 2) · · · P(Z(t−1)

i = Q)
)
Λt−1


P(Z(t−1)

i = 1)

P(Z(t−1)
i = 2)

...

P(Z(t−1)
i = Q)


But, (

P(Z(t−1)
i = 1) · · · P(Z(t−1)

i = Q)
)
=
(
P(Z(t−2)

i = 1) · · · P(Z(t−2)
i = Q)

)
η

=
(
P(Z(t−3)

i = 1) · · · P(Z(t−3)
i = Q)

)
η2

·

·

·

=
(
P(Z(1)

i = 1) · · · P(Z(1)
i = Q)

)
ηt−2

=
(
α1 α2 · · · αQ

)
ηt−2

where ααα =
(
α1 · · · αQ

)′
denotes the initial distribution of the community membership of any

node Similarly,
(
P(Z(t−1)

j = 1) P(Z(t−1)
j = 2) · · · P(Z(1)

j = Q)
)
=
(
α1 α2 · · · αQ

)
ηt−2. Let

ααα =
(
α1 α2 · · · αQ

)T
. Thus we have that
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Q∑
k,m=1

β
(t)
kmP(Z(t−1)

i = k)P(Z(t−1)
j = m) = αααT ηt−2Λt−1(η

t−2)′ααα

∴ P(Z(t−1)
i = q, Z

(t−1)
j = l|Y (t−1)

ij = 1) =
β
(t)
ql P(Z(t−1)

i = q) P(Z(t−1)
j = l)

ααα′ ηt−2 Λt−1 (ηt−2)′ ααα

∴ P(Y (t)
ij = 1|Y (t−1)

ij = 1) =

Q∑
q,l=1

(ηΛtη
′)ql

β
(t)
ql P(Z(t−1)

i = q) P(Z(t−1)
j = l)

ααα′ ηt−2 Λt−1 (ηt−2)′ ααα



=

Q∑
q,l=1

P(Z(t−1)
i = q) β

(t)
ql (ηΛtη

′)ql P(Z
(t−1)
j = l)

ααα′ ηt−2 Λt−1 (ηt−2)′ ααα

=
ααα′ ηt−2 [Λt−1 ⊙ (ηΛtη

′)] (ηt−2)′ ααα

ααα′ ηt−2 Λt−1 (ηt−2)′ ααα

where ⊙ represents the Hadamard product.

Similarly, with J representing the matrix with all ones, we have that

P(Y (t)
ij = 0|Y (t−1)

ij = 1) =
ααα′ ηt−2 [(J − Λt−1)⊙ (ηΛtη

′)] (ηt−2)′ ααα

ααα′ ηt−2 (J − Λt−1) (ηt−2)′ ααα

4.1.2 Expected Edge Density

After having a look at the conditional dependence of edge behaviour, we are also interested in

exploring the expected edge density of the dynamic networks i.e. if Y
(t)
ij denotes the presence or

absence of an edge between nodes i and j at time t (Y
(t)
ij = 1 if an edge exists between nodes i and

j at time t, else 0), then the expected edge density at time t is given by

E

 1(
n
2

)∑
i<j

Y
(t)
ij


where Y

(t)
ij |{Z(t)

i = q, Z
(t)
j = l} ∼ Ber(β

(t)
ql ) where β

(t)
ql are the parameters of the model and

(Z
(t)
i )1≤i≤N,1≤t≤T denote the community memberships of each node at a particular time instant.

Let Λt =
((

β
(t)
ql

))Q
q,l=1

Now note that

Expected Edge density at time t = E

 1(
n
2

)∑
i<j

Y
(t)
ij


=

2

n(n− 1)

∑
i<j

E
[
Y

(t)
ij

]
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E
[
Y

(t)
ij

]
= E

[
E
[
Y

(t)
ij |Z(t)

i , Z
(t)
j

]]
=

Q∑
q,l=1

β
(t)
ql P(Z

(t)
i = q, Z

(t)
j = l)

=

Q∑
q,l=1

β
(t)
ql P(Z

(t)
i = q)P(Z(t)

j = l)

=
(
P(Z(t)

i = 1) P(Z(t)
i = 2) · · · P(Z(t)

i = Q)
)
Λt


P(Z(t)

i = 1)

P(Z(t)
i = 2)
...

P(Z(t)
i = Q)


From section (4.1.1) we know that (following the same notations as in(4.1.1))

(
P(Z(t)

i = 1) P(Z(t)
i = 2) · · · P(Z(t)

i = Q)
)
=
(
α1 α2 · · · αQ

)
ηt−1 = ααα′ηt−1

Thus we have that

E
[
Y

(t)
ij

]
=
(
α1 α2 · · · αQ

)
ηt−1Λt(η

t−1)′


α1

...

αQ

 = ααα′ηt−1Λt(η
t−1)′ααα

∴ Expected Edge Density at time t = E

 1(
n
2

)∑
i<j

Y
(t)
ij


=

2

n(n− 1)

∑
i<j

E
[
Y

(t)
ij

]
=

2

n(n− 1)

∑
i<j

ααα′ηt−1Λt(η
t−1)′ααα

= ααα′ηt−1Λt(η
t−1)′ααα

This expected edge density can also be calculated using the results from the section 4.1.1 by

noting the following identity:

E[Y (t)
ij ] = P(Y (t)

ij = 1)

= P(Y (t−1)
ij = 1) P(Y (t)

ij = 1|Y (t−1)
ij = 1) + P(Y (t−1)

ij = 0) P(Y (t)
ij = 1|Y (t−1)

ij = 0)

Thus by letting at = P(Y (t)
ij = 1) for 1 ≤ t ≤ T , we have that
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at = at−1 P(Y (t)
ij = 1|Y (t−1)

ij = 1) + (1− at−1) P(Y (t)
ij = 1|Y (t−1)

ij = 0)

Substituting the results obtained in section 4.1.1, and solving this above recurrence relation we

again get that

E[Y (t)
ij ] = ααα′ηt−1Λt(η

t−1)′ααα

5 Simulation Study

To empirically validate the theoretical results derived in Sections 4.1.1 and 4.1.2, and further

investigate the behaviour of edge density under the dynamic stochastic block model in Matias and

Miele (2017), a comprehensive simulation study was undertaken. The study involved generating

multiple realizations of dynamic networks and analyzing the evolution of edge density over time.

5.1 Simulation Setup

The simulation setup consisted of the following specifications:

1. Number of nodes: 400

2. Number of time stamps: 500

3. Number of communities: 3

The parameters {β(t)
ql }

Q
q,l=1 governing the connection probabilities between communities at each

time point were simulated as follows:

• For all 1 ≤ t ≤ T , the diagonal entries of Λt were drawn uniformly from the interval (0.55, 0.9),

representing within-community connection probabilities.

• The off-diagonal entries of Λt, representing between-community connection probabilities, were

drawn uniformly from (0, 1) while ensuring symmetry of the matrices.

The transition matrix η for the community membership Markov chain was specified as:

η =


0.8 0.05 0.15

0.2 0.75 0.05

0.25 0.2 0.55


With the above parameter settings, a total of 850 sequences of dynamic networks were generated,

each consisting of T = 500 time-indexed networks. The generation procedure for each sequence

was as follows:
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1. Simulate initial community memberships from a uniform distribution over the three commu-

nities.

2. Generate the network at time t = 1 using the initial community memberships and Λ1.

3. Update the community membership distribution for time t = 1 using the transition matrix η.

4. Simulate community memberships for each node at time t = 1 from the updated distribution

and generate the corresponding network.

5. Repeat steps 3 and 4 until the network at time t = T is generated.

5.2 Results and Analysis

Let W t
i denote the edge density of the tth network in the ith simulation sequence. The evolution of

W t
i across different initial community memberships and parameter sets {β(t)

ql }
Q
q,l=1 is illustrated in

Figure (2).

Figure 2: Evolution of W t
i

Figure 3 displays the adjacency matrix for the network at time t = T for a particular simulation,

revealing a community structure consistent with the stationary distribution η∗ =
(
0.52564 0.26923 0.20512

)
of the transition matrix η.

To verify the theoretical result in Section 4.1.1, the conditional probability P (Y
(t)
ij = 1|Y (t−1)

ij =

1) was approximated using Monte Carlo methods. Specifically, the proportion of times the edge

(1, 2) existed at time t, given its presence at time t−1, was computed across the simulated sequences.

Figure 4 compares these simulated probabilities with the theoretical values obtained in Section 4.1.1,

demonstrating excellent agreement between the two.

Furthermore, the distribution of edge densities for large values of t was investigated by con-

structing a histogram of the simulated values {W 500
i }850i=1. Figure 6 presents a centered and scaled

version of this histogram. As depicted in Figure 6, the edge densities when centered and scaled

as: T
(
W 500

i − E[W 500
1 ]

)
, exhibited a non-degenerate distribution, suggesting the potential for con-

structing large-sample statistical tests based on the edge density statistic.
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Figure 3: Adjacency matrix for the network at time t = T for a particular simulation

Figure 4: The simulated and theoretical obtained values of P (Y
(t)
12 = 1|Y (t−1)

12 = 1)
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Figure 5: Histogram of edge densities at t = 500

Figure 6: Centered and scaled histogram of the edge densities at t = 500
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7 CONCLUSION

The simulation study validated the theoretical findings and provided insights into the distri-

butional properties of edge density under the dynamic stochastic block model framework. These

results lay the groundwork for further exploration and development of statistical inference proce-

dures tailored to the analysis of dynamic network data.

6 Further exploration

Our simulations majorly focused on the verification of theoretical results obtained in sections 4.1.2

and 4.1.1. We also explored the distribution of edge densities for large t. Another area of exploration

could have been the distribution of average edge densities from t = 1 to t = T . Since the edge

densities would not be independent for different t (since the underlying dynamic networks had

their community memberships evolved via a Markov Chain), it would be interesting to check if

the average edge densities have any law of large number type results or results similar to that of

the central limit theorem. In this report, we have only focused on a particular descriptive network

summary statistic namely the edge density. Summary statistics like the motif counts and centrality

of the network would provide more information about the structure of the network hence extending

the results (and the simulations) of this report to these metrics may be useful for in-depth analysis

of the dynamic networks.

7 Conclusion

This report explored various approaches for modelling and analyzing dynamic networks, with a

particular focus on the dynamic stochastic block model proposed by Matias and Miele (2017).

Different models were reviewed, including the dynamic Erdos-Renyi model, time series models for

networks, and Markov random field approaches. Simulations were conducted to verify theoretical

results derived for the edge density and its evolution over time under the dynamic stochastic

block model. The simulations validated the theoretical expressions obtained for the conditional

probability of edge existence given past states, as well as the expected edge density at any time

point. Additionally, the distribution of edge densities for large time points was explored, revealing

a non-degenerate limiting distribution after appropriate centering and scaling.

While this report concentrated primarily on edge density, further research could extend the

analysis to other topological descriptors, such as motif counts and centrality measures. Investigating

the behaviour and distributional properties of these statistics would provide deeper insights into

the structural dynamics of evolving networks. Moreover, potential avenues for future work include

studying the distribution of average edge densities across multiple time points, accounting for

dependencies introduced by the Markovian evolution of community memberships. Establishing

limit theorems or laws of large numbers for such averaged quantities could facilitate the development
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of statistical inference procedures based on edge density or other summary statistics.

Overall, this project has contributed to the understanding of dynamic network models, partic-

ularly the dynamic stochastic block model, and has paved the way for further exploration of de-

scriptive statistics and their analytical and distributional properties in the context of time-varying

networks.
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