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Study of blue whales

The deep blue sea is home to fascinating and mysterious
creatures. Secrets lie within the depths waiting to be discovered.

Whales, like the majestic Blue Whales, communicate through
sound. Their vocalizations hold captivating mysteries yet to be
fully understood.

High-dimensional data holds the key to unraveling these
mysteries. Advanced techniques allow us to delve into the
complexity of whale vocalizations.

Collecting and analyzing this data is a challenging task requiring
expertise and specialized equipment. Understanding whale
vocalizations aids conservation efforts, helping us protect these
magnificent creatures

Tackling the complexity of high-dimensional data leads to
groundbreaking discoveries. Developing accurate models
empowers marine biologists and environmentalists in their
crucial work
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Study of blue whales (Contd.)

Blue Whale vocalization data:

2 classes of audio files: A-calls and non A-calls
A-calls: Characterized by a low-frequency, repetitive
pattern of pulses that are typically around 70-90 Hz in
frequency; typically produced by adult males and can last
for several minutes
The data has about 26,000 audio files out of which 13,000
are type A-calls and 13,000 are type - non A calls. The
spectrogram of each audio file is then converted to a
vector of length 2,30,400 consisting of pixel intensity
values of the Mel-Spectrogram
The feature matrix we have thus is a 26000× 230400
matrix with 230400 predictors and one label (whether the
audio is of type A call or not) : 8.8 times more number of
predictors than number of observations
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What does High dimensional data mean?

Definition

High-dimensional data are defined as data in which the number
of features (variables observed), p, are close to or larger than
the number of observations (or data points), n.

Common in

Audio and image data

Sensor data: Data obtained from IoT devices

Text data: Where each word or n-gram is different
dimension

Genomic data : Variables representing different genes and
their expression levels
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Fields of study with High Dimensional data

Audio data: Examples of features that can be extracted:

Mel-Frequency Cepstral Coefficients (MFCCs): Spectral
characteristics of audio signals, representing the shape of
the power spectrum of the audio signal over time
Spectral features: Frequency content or patterns in an
audio signal, e.g. power spectral density, spectral centroid,
spectral contrast, or spectral roll-off
Mel-spectrogram: Visual representation of frequency
content of audio signal; Applying mel-frequency scaling to
the power spectrum of audio signal
Temporal features: Examples- zero-crossing rate, root
mean square energy, or pitch

Image data: Examples:

Pixel intensity values: Feature matrix contains the pixel
intensity values for all pixels in the image
Texture Features: Spatial arrangement of pixel intensities
e.g. mean, variance, entropy, etc.
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Fields of study with High Dimensional data
(Contd.)

Color features: Examples- Color histograms, color
moments, or color-based texture features
Frequency domain features: Examples- Fourier transform
coefficients, wavelet coefficients, etc.

Sensor data:

Time-domain features: Characteristics in time domain e.g.
minimum/maximum/amplitude of sensor measurements,
rate of change or time duration of certain events
Frequency-domain features: Characteristics in the
frequency domain e.g. power spectral density, spectral
entropy, or dominant frequency
Autocorrelation features: Similarity or periodicity of sensor
measurements over time, e.g. autocorrelation
coefficients/energy/entropy.
Waveform-based features: Shape or waveform
characteristics of sensor data, e.g. peak value,
zero-crossing rate, or waveform slope
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Fields of study with High Dimensional data
(Contd.)

Text Data:

Bag-of-words (BoW): Documents represented as vectors;
Values represent word frequency in each document
Term Frequency-Inverse Document Frequency (TF-IDF):
Considers term frequency (TF) as well as inverse
document frequency (IDF) across the corpus; Measures
term importance relative to its frequency in the corpus
N-grams:Contiguous sequences of N words in a text
document; Useful for capturing local word order in text
data.

Genomic data: Examples:

Variant data: Presence or absence of specific genetic
variants in a sample or population; measured using
techniques such as genotyping arrays, whole genome
sequencing (WGS), or targeted sequencing approaches.
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Fields of study with High Dimensional data
(Contd.)

DNA sequences: Series of nucleotide bases
Gene expression data: Activity levels of genes; can be
measured using techniques such as RNA sequencing
(RNA-seq) or microarray assays

Figure: Microarray data

9 / 46



High
dimensional
Logistic

Regression

Rohan Shinde

Introduction

Example

High dimensional
data

Logistic regression

Variable
Selection

LASSO Regression

Inference

Appendix

Group LASSO

Block Coordinate
Gradient Descent

Why different methods for High dimensional data?

Consider the problem of linear regression:

yn×1 = Xn×pβββp×1 + ϵϵϵn×1 where ϵϵϵ ∼ Nn(0n×1, In)

When X is random, the least squares solution to the problem is
given by β̂ββ = (X′X)−X′y

β̂ββ ∼ Nn(βββ, (X′X)−)

What happens if p > n?

We have more number of variables than number of
equations
Intuitively, we should be able to solve for βj ’s certainly but
there would be infinitely many solutions i.e. we have
over-parametrized the model
The likelihood function may have multiple local maxima,
and the optimization algorithm may converge to a
sub-optimal solution
The validity of MLE comes into question
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Example using R

R code

x <- matrix(rlogis(40),

ncol = 8)

y <- rnorm(5)

model <- lm(y~x)

summary(model)

Figure: Output of R code
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What is Logistic Regression?

Logistic Regression

In logistic regression, the conditional probability of the dependent
variables (class) y1, y2, · · · , yn ∈ {0, 1} are modeled as a
logit-transformed multiple linear regression of the explanatory
variables (input features) x1, x2, · · · , xn ∈ Rp:

P(yi = 1|xi, β1, β2, · · · , βp) =
1

1 + exp (−xTi βββ)

where βββ′ = (β1 β2 · · · βp) is the vector of parameters of the model.
Assume that yi |xi, β1, β2, · · · , βp are independent of each other
∀ i ∈ {1, · · · , n}

Parameters are estimated using the Maximum Likelihood approach
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Estimation of parameters in logistic regression

β̂ββ = argmax
βββ∈Rp

n∏
i=1

P(yi |xi,βββ)

= argmax
βββ∈Rp

∏
1≤i≤n:
ξi=1

P(yi = ξi |xi,βββ)
∏

1≤i≤n:
ξi=0

P(yi = ξi |xi,βββ)

= argmax
βββ∈Rp

n∏
i=1

(
1

1 + exp (−xTi βββ)

)yi ( exp (−xTi βββ)
1 + exp (−xTi βββ)

)1−yi

If p ≥ n, there exists a hyperplane in Rp that exactly separates
the points x1, x2, · · · , xn based on their classes

Albert et al 1 prove that in case of this separating hyperplane,
the MLE estimate of βββ does not exist

1A. Albert and J. A. Anderson, On the Existence of Maximum
Likelihood Estimates in Logistic Regression Models
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Problems in High dimensional data

This problem could have been tackled if we had p < n; So we
need to reduce the number of dimensions (select variables
cautiously)

Thus, we focus on the below two problems in the context of
high-dimensional logistic regression:

Variable selection: We introduce different penalties in the
optimization problem to introduce sparsity. We discuss majorly:

LASSO (Least Absolute Shrinkage and Selection Operator)
Group LASSO: To deal with dummy variables created from
categorical explanatory variables

Statistical inference based on the variable selection method
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What is regularization by penalization?

Definition2

Regularization methods that are derived from maximum likelihood
estimates are based on the penalized log-likelihood :

ℓp(βββ) =
n∑

i=1

ℓi (βββ)− λJ(βββ)

where ℓi (βββ) is the usual log-likelihood contribution of the ith
observation, λ is a tuning parameter, and J(βββ) is a function that
penalizes the size of the parameters.

Why regularization

It is possible to increase the likelihood beyond any bound,
without affecting predictive accuracy at all3

2G. Tutz, Regression for Categorical Data
3https://stats.stackexchange.com/a/261063
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Important aspects for regression modelling by
regularization

Existence of unique estimates: This is where MLE’s often fail

Prediction accuracy is not compromised much

Sparseness and interpretation

Definition4

A regression vector is sparse if, only some of its components are
nonzero while the rest is set equal to zero, thereby inducing variable
selection.

To increase prediction accuracy in high-dimensional settings and
enhance model interpretability, we prefer sparse solutions
(Ballings, Van den Poel, 2015, Bertsimas, Copenhaver, 2018,
Ma, Fildes, Huang, 2016, Wilms, Gelper, Croux, 2016

4Lea Bottmer et al, Sparse regression for large data sets with outliers
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What is LASSO regression?

LASSO penalty

Originally proposed by Tibshirani (1996) for the linear model in the
constrained regression version , LASSO uses the L1 penalty:

J(βββ) =
n∑

j=1

|βj |

The log-likelihood is maximized subject to the constraint∑n
j=1 |βj | ≤ t for some t ∈ R

Example: Consider the problem of simple linear regression
yi = xiβ + ϵi for i ∈ {1, 2, · · · , n}; yi , xi ∈ R ∀ i ∈ {1, 2, · · · , n}
where xi ’s are non-random. The LASSO penalized solution to the
least squares problem can be given by

β̂LASSO = argmin
β∈R

n∑
i=1

(yi − xiβ)
2 + λ|β| λ > 0

17 / 46
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Example: LASSO penalty in simple linear regression

β̂LASSO =

Sλ/2

(
n∑

i=1

xiyi

)
n∑

i=1

x2i

where

Sλ(x) =


x + λ, if x < −λ
0, if |x | < λ

x − λ, if x > λ Figure: β̂LASSO vs. β̂LSE

Regularization path for LASSO

Plot showing how the coefficients of the variables change as the
regularization parameter varies
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Regularization path for LASSO

Figure: An example of the lasso regularization path (Taken from
notes by Tibshirani). Each coloured line denotes a component of the
lasso solution β̂j(λ), j = 1, . . . , p as a function of λ
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Why use LASSO in high dimensional data?

With a large number of predictors one often wants to determine
a smaller subset that contains the strongest variables :
LASSO shrinks some coefficients and sets others to 0

But if p > n, does LASSO even guarantee that the number of
non-zero coefficient estimates is less than n? Yes it does:

Consider the more general minimization problem:

β̂ = argmin
βββ∈Rp

f (Xβββ) + λ∥βββ∥1

where the loss function f : Rn → R is differentiable and strictly convex.

Lemma

If X ∈ Rn×p has entries drawn from a continuous probability distribution on
Rnp, then for any differentiable, strictly convex function f , for any λ > 0,
the minimization problem stated above has a unique solution with
probability one. This solution has at most min{n, p} nonzero components.

20 / 46
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Coordinate Descent for fitting LASSO penalized
Logistic Regression

The objective function for LASSO penalized negative
log-likelihood of logistic model is convex and the likelihood part
is differentiable, so in principle finding a solution is a standard
task in convex optimization. Coordinate descent is both
attractive and efficient for this problem

The glmnet package uses a proximal-Newton iterative approach,
which repeatedly approximates the negative log-likelihood by a
quadratic function

The log-likelihood of logistic regression without the lasso
penalty can be given as:

ℓ(βββ) =
1

N

N∑
i=1

[yi (β0 + x′iβββ)− log (1 + exp (β0 + x′iβββ))] (1)

which corresponds to a concave function of the parameters
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Detailed Coordinate Descent Algorithm

The Newton algorithm for maximizing the (unpenalized)
log-likelihood (1) amounts to iteratively reweighted least squares

Hence, if the current estimates of the parameters are (β̃0, β̃ββ), we
form a second-order Taylor expansion about current estimates

In terms of the shorthand p̃(xi ) = p(xi ; β̃0, β̃ββ), and
wi = p̃(xi )(1− p̃(xi )), this Taylor expansion leads to the
quadratic objective function:

ℓQ(β̃0, β̃ββ) = −
1

2N

N∑
i=1

wi (zi − β0 − x′iβββ)
2 + C (β̃0, β̃ββ) (2)

where zi = β̃0 + x′iβ̃ββ +
yi − p̃(xi )

p̃(xi )(1− p̃(xi ))
is the current working

response.
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Detailed Coordinate Descent Algorithm (Contd.)

The Newton update is obtained by minimizing ℓQ , which is a
simple weighted least-squares problem. In order to solve the
regularized problem, one could apply coordinate descent directly
to the criterion

ℓ(βββ) =
1

N

N∑
i=1

[yi (β0 + x′iβββ)− log(1 + exp (β0 + x′iβββ))]−λPα(βββ)

(3)

where Pα(βββ) = ∥βββ∥1
A disadvantage of this approach is that the optimizing values
along each coordinate are not explicitly available and require a
line search

In our experience, it is better to apply coordinate descent to the
quadratic approximation, resulting in a nested algorithm
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Detailed Coordinate Descent Algorithm (Contd.)

For each value of λ, we create an outer loop which computes
the quadratic approximation ℓQ about the current parameters
(β̃0, β̃ββ)

Then we use coordinate descent to solve the penalized weighted
least-squares problem

minimize
(β̃0,β̃ββ)∈Rp+1

{−ℓQ(β̃0, β̃ββ) + λPα(βββ)} (4)

This is known as a generalized Newton algorithm, and the
solution to the minimization problem (4) defines a proximal
Newton map

When p ≫ N, one cannot run λ all the way to zero, because
the saturated logistic regression fit is undefined (parameters
wander off to ±∞ in order to achieve probabilities of 0 or 1)

24 / 46



High
dimensional
Logistic

Regression

Rohan Shinde

Introduction

Example

High dimensional
data

Logistic regression

Variable
Selection

LASSO Regression

Inference

Appendix

Group LASSO

Block Coordinate
Gradient Descent

Algorithm of Coordinate Descent

Overall the procedure consists of a sequence of nested loops:

1 OUTER LOOP: Decrement λ

2 MIDDLE LOOP: Update the quadratic approximation ℓQ using
the current parameters (β̃0, β̃ββ)

3 INNER LOOP: Run the coordinate descent algorithm on the
penalized weighted-least-squares problem given in (4)

The Newton algorithm is not guaranteed to converge without
step-size optimization5. The glmnet package, which we will be
using for application part in the presentation, does not
implement any checks for divergence

We have a closed form expression for the starting solutions, and
each subsequent solution is warm-started from the previous
close-by solution, which generally makes the quadratic
approximations very accurate

5Lee, Lee, Abneel and Ng 2006
25 / 46
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Shortcomings of LASSO in presence of categorical
predictors?

LASSO solution is not satisfactory as it only selects
individual dummy variables instead of whole factors

The LASSO solution depends on how the dummy variables
are encoded. Choosing different contrasts for a categorical
predictor will produce different solutions in general

It is more sensible to select whole factors or continuous
variables

The group lasso proposed by Yuan and Lin (2006) can
overcome these problems
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Inferences for High Dimensional L1 penalized
Logistic regression

The penalized maximum likelihood estimation methods
have been well developed to estimate βββ ∈ Rp in the
high-dimensional logistic model (Bunea, 2008; Bach, 2010;
Buhlmann and van de Geer, 2011; Meier et al., 2008;
Negahban et al., 2009; Huang and Zhang, 2012)

The penalized estimators enjoy desirable estimation
accuracy properties. However, these methods do not lend
themselves directly to statistical inference for the case
probability mainly because the bias of the penalized
estimator dominates the total uncertainty
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Guo et al’s method for estimating case probabilities

Xiao Guo et al discuss a method to draw inferences by
tweaking the penalized estimator to obtain optimal
confidence intervals for case probabilities

The quantity of interest is the case probability
P(yi = 1|Xi = x∗) ≡ h(xT∗ β), which is the conditional
probability of yi = 1 given Xi = x∗ ∈ Rp , where

h(z) =
exp(z)

1 + exp(z)

The penalized log-likelihood estimator β̂ββ is defined as in
(3) with the tuning parameter λ ≍

√
log p/n

28 / 46
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Guo et al’s method for estimating case probabilities
(Contd.)

Even though β̂ follows certain nice accuracy properties,
the plugin estimator h(xT∗ β̂) cannot be directly used for
confidence interval construction and hypothesis testing,
because its bias can be as large as its variance 6

The proposed method by Guo et al. is built on the idea of
correcting the bias of the plug-in estimator xT∗ β̂ and then
applying the h function to estimate the case probability

We conduct the bias correction through estimating the
error of the plug-in estimator xT∗ β̂ − xT∗ β = xT∗ (β̂ − β)

6Guo et al, Inference for the Case Probability in High-dimensional
Logistic regression
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Guo et al’s method for estimating case probabilities
(Contd.)

Linearization:

A bias-corrected estimator of βj can be constructed as

β̂j + ûT
1

n

n∑
i=1

[h(XT
i· β̂)(1− h(XT

i· β̂))]
−1Xi·(yi − h(XT

i· β̂)) (5)

where û ∈ Rp is the projection direction used for correcting the
bias of β̂j and Xi· is the ith row of design matrix X

Define the error ϵi = yi − h(XT
i· β) for 1 ≤ i ≤ n. Applying

Taylor series expansion of h with

Ri =

∫ 1

0

(1− t)h′′(XT
i· β̂ + tXT

i· (β − β̂))dt · (XT
i· (β − β̂))2 we

get yi − h(XT
i· β̂) = h(XT

i· β̂)(1− h(XT
i· β̂))[X

T
i· (β − β̂) +∆i ] + ϵi

with ∆i = Ri/h
′(XT

i· β̂)
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Guo et al’s method for estimating case probabilities
(Contd.)

Hence the second term of eq. (5) can be decomposed as

ûT
1

n

n∑
i=1

[h(XT
i· β̂)(1−h(XT

i· β̂))]
−1ϵiXi·+ ûT Σ̂(β− β̂)+ ûT

1

n

n∑
i=1

∆iXi·

with Σ̂ = 1
n

∑n
i=1 Xi·X

T
i·

Now for the bias correction step, the authors chose û ∈ Rp such that
Σ̂û ≈ ej so that

ûT
1

n

n∑
i=1

[h(XT
i· β̂)(1− h(XT

i· β̂))]
−1Xi·(yi − h(XT

i· β̂))

≈ ûT Σ̂(β − β̂)

≈ eTj (β − β̂)

= βj − β̂j
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Guo et al’s method for estimating case probabilities
(Contd.)

Variance enhancement: Uniform procedure for x∗:

The authors correct the bias of the plug-in estimator xT∗ β̂ as

x̂T∗ β = xT∗ β̂+ûT
1

n

n∑
i=1

[h(XT
i· β̂)(1−h(XT

i· β̂))]
−1Xi·(yi−h(XT

i· β̂))

Decompose the estimation error x̂T∗ β − xT∗ β̂ as

1

n

n∑
i=1

[h(XT
i· β̂)(1− h(XT

i· β̂))]
−1ϵi û

TXi· + (Σ̂û − x∗)
T (β − β̂)

+
1

n

n∑
i=1

∆i û
TXi·
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Guo et al’s method for estimating case probabilities
(Contd.)

Motivated by above decomposition, we construct û ∈ Rp as the
solution to the following optimization problem

û = arg min
u∈Rp

uT Σ̂u subject to ∥Σ̂u − x∗∥∞ ≤ ∥x∗∥2λn (6)

|xT∗ Σ̂u − ∥x∗∥22| ≤ ∥x∗∥22λn (7)

∥Xu∥∞ ≤ ∥x∗∥2τn (8)

where λn ≍
√

log p/n and τn ≍
√
log n
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Guo et al’s method for estimating case probabilities
(Contd.)

Objective function in eq. (6) scaled by 1/n, uT Σ̂u is of
the same order of magnitude as the variance of the first
term in the error decomposition given at the start of
variance enhancement section

The constraints in eq. (6) and eq. (8) are introduced to
control the second and third terms in the same error
decomposition

Thus objective function together with eq. (8) and eq. (8)

ensure that x̂T∗ β − xT∗ β̂ is controlled to be small

Constraint in eq. (7) is to ensure that the first term of the
decomposition is the dominant terms among the three
terms in the error decomposition
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Guo et al’s method for estimating case probabilities
(Contd.)

In practice, instead of solving the problem in eqs. (6), (7),
and (8) we solve it’s dual problem

v̂ = arg min
v∈Rp+1

1

4
vTHT Σ̂Hv + bTHv + λn∥v∥1

with H = [b, Ip×p], b =
x∗
∥x∗∥2

We then solve the primal problem as û = − v̂−1+v̂1b
2

Using the above we estimate xT∗ β by x̂T∗ β and
subsequently we estimate the case probability

P(yi = 1|Xi · = x∗) by P̂(yi = 1|Xi · = x∗) = h(x̂T∗ β)
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Inference for case probabilities

From the above procedure, Guo et al provide an estimate for

asymptotic variance of x̂T∗ β as

V̂ = ûT

[
1

n2

n∑
i=1

[h(XT
i· β̂)(1− h(XT

i· β̂))]
−1Xi·X

T
i·

]
û

The authors then construct the confidence intervals for the case
probability P(yi = 1|Xi· = x∗) as follows:

CIα(x∗) =
[
h(x̂T

∗ β − zα/2V̂
1/2), h(x̂T

∗ β + zα/2V̂
1/2)

]
where zα/2 is the upper α/2-quantile of the standard normal
distribution

If the goal is to test the null hypothesis H0 : h(x
T
∗ β) < c∗ for

c∗ ∈ (0, 1) we use the testing procedure

ϕc∗
α (x∗) = 1

(
x̂T
∗ β − zα/2V̂

1/2 ≥ h−1(c∗)
)
which means we label the

observation as case if x̂T
∗ β − zα/2V̂

1/2 ≥ h−1(c∗), as a control
otherwise
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Setup of Yuan and Lin’s Group LASSO

Let the p-dimensional predictor be structured as
xTi = (xTi ,1, · · · , xTi ,G ), where xi ,j corresponds to the jth
group of variables

A group of variables may refer to the dummy variables of
one factor, with dfj denoting the number of the variables
in the jth group. A continuous variable that has a linear
form within the predictor obviously has dfj = 1

A group of variables may also refer to interactions between
factors or between factors and continuous variables, where
dfj is the number of individual interaction terms

Correspondingly the parameter vector is partitioned into
sub-vectors, βββT = (βββT

1 , ...,βββ
T
G )
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Group LASSO penalty

Penalty for Group LASSO

The group lasso uses the penalty

J(βββ) =
G∑
i=1

√
βββTKjβββ

where Kj ’s are positive definite matrices. In the original paper
of Yuan and Lin (2006), authors use Kj = dfj Ij
∀ j ∈ {1, . . . , J}. Using these Kj ’s, the penalty of group LASSO
is given by

J(βββ) =
G∑
i=1

√
dfj∥βββj∥2

The penalty encourages sparsity in the sense that either
β̂j = 0 or β̂js = 0 for s = 1, ..., dfj .
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Advantages of Group LASSO over LASSO

The group lasso can select entire groups of variables
together, which can be useful when you have multiple
variables that are related or belong to the same group and
you want to either include or exclude the entire group of
variables in the model

In general, the group LASSO tends to produce sparser
models compared to LASSO when groups of related
variables are present in the data

Flexibility in specifying the group structure between
groups; groups can be predefined based on known domain
knowledge

More interpretable models than LASSO
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Some shortcomings of Group LASSO

Suppose we have too many categories within some
categorical variable and we have encoded that variable
using dummy coding

It may well happen that only a few of those categories are
actually useful for the underlying regression

But group LASSO either includes the categorical variable
or completely disregards it

Thereby, group LASSO is not much flexible to bring
sparsity within-groups
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Block Coordinate Gradient Descent

The key idea of the block coordinate gradient descent method
of Tseng and Yun (2006) is to combine a quadratic
approximation of the log-likelihood with an additional line
search. Using a second-order Taylor expansion at β̂(t) and
replacing the Hessian of the log-likelihood function ℓ(.) by a
suitable matrix H(t) we define

M
(t)
λ (d) = −{ℓ(β̂ββ

(t)
) + dT∇ℓ(β̂ββ

(t)
) +

1

2
dTH(T )d}

+ λ

G∑
g=1

√
dfg∥β̂ββ

(t)

g + dg∥2

≈ Sλ(β̂ββ
(t)

+ d)

where Sλ(βββ) = −ℓ(βββ) + λ
∑G

g=1

√
dfg∥βββg∥2 and ℓ(.) defined as in

(5) and d ∈ Rp+1
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Block Coordinate Gradient Descent

Now we consider the minimization of M
(t)
λ (.) with respect to

the gth penalized parameter group. This means that we restrict
ourselves to vectors d with dk = 0 for k ̸= g . Moreover, we

assume that the corresponding dfg × dfg submatrix H
(t)
gg is

diagonal, i.e. H
(t)
gg = h

(t)
g · Idfg for some scalar h

(t)
g ∈ R

If ∥∇ℓ(β̂ββ
(t)
)g − h

(t)
g β̂ββ

(t)
∥2 ≤ λ

√
dfg , the minimizer of M

(t)
λ (d)

is d
(t)
g = −β̂ββ

(t)

g . Otherwise

d
(t)
g = − 1

h
(t)
g

(
∇ℓ(β̂ββ

(t)
)g − λ

√
dfg

∇ℓ(β̂ββ
(t)
)g − h

(t)
g β̂ββ

(t)

∥∇ℓ(β̂ββ
(t)
)g − h

(t)
g β̂ββ

(t)
∥2

)
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d(t) ̸= 0 an inexact line search using the Armijo rule has to be
performed: Let α(t) be the largest value in {α0δ

l}l≥0 such that

Sλ(β̂ββ
(t)

+ α(t)d)− Sλ(β̂ββ
(t)
) ≤ α(t)σ∆(t)

where 0 < δ < 1, 0 < σ < 1, α0 > 0, and ∆(t) is the
improvement in the objective function Sλ when using a linear
approximation for the log-likelihood, i.e.

∆(t) = −(d(t))T∇ℓ(β̂ββ
(t)
)+λ

√
dfg∥β̂ββ

(t)

g +d
(t)
g ∥2−λ

√
dfg∥β̂ββ

(t)

g ∥

and we finally define β̂ββ
(t+1)

= β̂ββ
(t)

+ α(t)d(t). The outline of
the algorithm is given on the next slide.
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Block Coordinate Gradient Descent for Group
LASSO

Algorithm Logistic Group Lasso Algorithm (Block Coordinate
Gradient Descent)

1: Let βββ ∈ Rp+1 be an initial parameter vector
2: for g = 0, . . . ,G do
3: Hgg ← hg (βββ) · Idfg
4: d← minimize

d|dk=0,k ̸=g
Mλ(d)

5: if d ̸= 0 then
6: α← Line Search
7: βββ ← βββ + α · d
8: end if
9: end for

10: Repeat step (2)–(9) until some convergence criteria is met
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